學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

2022年初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間: 淑燕0 分享

2021年初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)有哪些?數(shù)學(xué)是思維的體操。處處都閃爍應(yīng)用數(shù)學(xué)的光芒,高度抽象的純粹數(shù)學(xué),也有其深刻而動(dòng)人的美麗,堪稱艱深難懂而璀璨美麗的藝術(shù)。一起來看看2021年初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn),歡迎查閱!

初二必備數(shù)學(xué)知識(shí)

位置與坐標(biāo)

1、確定位置

在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

2、平面直角坐標(biāo)系及有關(guān)概念

①平面直角坐標(biāo)系

在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

②坐標(biāo)軸和象限

為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

③點(diǎn)的坐標(biāo)的概念

對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

④不同位置的點(diǎn)的坐標(biāo)的特征

a、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一象限→ x>0,y>0

點(diǎn)P(x,y)在第二象限 → x<0,y>0

點(diǎn)P(x,y)在第三象限 → x<0,y<0

點(diǎn)P(x,y)在第四象限 → x>0,y<0

b、坐標(biāo)軸上的點(diǎn)的特征

點(diǎn)P(x,y)在x軸上 → y=0,x為任意實(shí)數(shù)

點(diǎn)P(x,y)在y軸上 → x=0,y為任意實(shí)數(shù)

點(diǎn)P(x,y)既在x軸上,又在y軸上→ x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

c、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等

點(diǎn)P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數(shù)

d、和坐標(biāo)軸平行的.直線上點(diǎn)的坐標(biāo)的特征

位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

e、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)

點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)

點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)

f、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

點(diǎn)P(x,y)到x軸的距離等于 ?y?

點(diǎn)P(x,y)到y(tǒng)軸的距離等于 ?x?

點(diǎn)P(x,y)到原點(diǎn)的距離等于 √x2+y2

初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納

第一章分式

1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

2分式的運(yùn)算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p

3整數(shù)指數(shù)冪的加減乘除法

4分式方程及其解法

第二章反比例函數(shù)

1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2反比例函數(shù)在實(shí)際問題中的應(yīng)用

第三章勾股定理

1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。

第四章四邊形

1平行四邊形

性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。

判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

兩組對(duì)角分別相等的四邊形是平行四邊形;

對(duì)角線互相平分的四邊形是平行四邊形;

一組對(duì)邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個(gè)角都是直角;

矩形的對(duì)角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。

初二下冊(cè)數(shù)學(xué)總結(jié)

第一章分式

1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

2分式的運(yùn)算

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減

3整數(shù)指數(shù)冪的加減乘除法

4分式方程及其解法

第二章反比例函數(shù)

1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2反比例函數(shù)在實(shí)際問題中的應(yīng)用

第三章勾股定理

1勾股定理:直角三角形的`兩個(gè)直角邊的平方和等于斜邊的平方

2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形

第四章四邊形

1平行四邊形

性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。

判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;

兩組對(duì)角分別相等的四邊形是平行四邊形;

對(duì)角線互相平分的四邊形是平行四邊形;

一組對(duì)邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個(gè)角都是直角;

矩形的對(duì)角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。

第五章數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

2021年初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章

2021初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2021

北師大版初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納

二年級(jí)下冊(cè)數(shù)學(xué)書上的知識(shí)點(diǎn)

2021八年級(jí)下數(shù)學(xué)教學(xué)計(jì)劃

2021八年級(jí)下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃

2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

初一下冊(cè)數(shù)學(xué)《三角形》知識(shí)點(diǎn)復(fù)習(xí)總結(jié)

初二暑假數(shù)學(xué)學(xué)習(xí)計(jì)劃2021

2021年初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納

1049056