學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 綿陽(yáng)市中考模擬考數(shù)學(xué)試卷

綿陽(yáng)市中考模擬考數(shù)學(xué)試卷

時(shí)間: 麗儀1102 分享

綿陽(yáng)市中考模擬考數(shù)學(xué)試卷

  綿陽(yáng)市的同學(xué)們,中考正在備考階段,馬上就要模擬考試了。數(shù)學(xué)都復(fù)習(xí)得怎么樣了?老師發(fā)的數(shù)學(xué)試卷都有做嗎?下面由學(xué)習(xí)啦小編為大家提供關(guān)于綿陽(yáng)市中考模擬考數(shù)學(xué)試卷,希望對(duì)大家有幫助!

  綿陽(yáng)市中考模擬考數(shù)學(xué)試卷題目

  一、選擇題(本大題共12個(gè)小題,每小題3分,共36分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)

  1. 的相反數(shù)是

  A.2 B. C.-2 D.

  2. 下列計(jì)算正確的是

  A.x2+x3=2x5 B. x2•x3=2x6 C.(-x3)2 =-x6 D. x6÷x3=x3

  3. 剪紙是中國(guó)的民間藝術(shù)。剪紙方法很多,如圖是一種剪紙方法的圖示(先將紙折疊,然后再剪,展開(kāi)后即得到圖案):如圖所示的四副圖案,不能用上述方法剪出的是

  A. B. C. D.

  4. “嫦娥三號(hào)”探月器在月球表面著陸前,要隨時(shí)精確測(cè)量探月器與月球表面的距離,以便計(jì)算控制探月器的速度,測(cè)量采用的是激光測(cè)距儀測(cè)算距離,從探月器上發(fā)出的激光經(jīng)過(guò)6×10-4秒到達(dá)月球表面,已知光在太空中的傳播速度約為3.2×108米/秒,則此時(shí)探月器與月球表面之間的距離用科學(xué)記數(shù)法表示為

  A. 米 B. 米 C. 米 D. 米

  5. 由五個(gè)同樣大小的立方體組成如圖的幾何體,則關(guān)于此幾何體三種視圖敘述正確的是

  A. 左視圖與俯視圖相同 B. 左視圖與主視圖相同

  C. 主視圖與俯視圖相同 D. 三種視圖都相同

  6.若一個(gè)圓錐的母線(xiàn)長(zhǎng)是它底面半徑的3倍,則它的側(cè)面展開(kāi)圖的圓心角等于

  A.120° B.135° C.150° D.180°

  7.A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的接球者將球隨機(jī)地傳給其他兩人中的某一人.則兩次傳球后球恰在B手中的概率為

  A. B. C. D.

  8. 矩形ABCD中,AB=2,AD=1,點(diǎn)M在邊CD上,若AM平分∠DMB,則DM的長(zhǎng)是

  A. B.

  C. D.

  9.圖①為一種平板電腦保護(hù)套的支架效果圖,AM固定于平板電腦背面,與可活動(dòng)的MB、CB部分組成支架。平板電腦的下端N保持在保護(hù)套CB上。不考慮拐角處的弧度及平板電腦和保護(hù)套的厚度,繪制成圖②。其中AN表示平板電腦,M為AN上的定點(diǎn),AN=CB=20cm,AM=8cm,MB=MN.我們把∠ANB叫做傾斜角。當(dāng)傾斜角為45°時(shí),求CN的長(zhǎng)為

  A. B. C. D.

  10. 如圖,矩形ABCD與菱形EFGH的對(duì)角線(xiàn)均交于點(diǎn)O,且EG∥BC,將矩形折疊,使點(diǎn)C與點(diǎn)O重合,折痕MN恰好過(guò)點(diǎn)G若AB= ,EF=2,∠H=120°,則DN的長(zhǎng)為(  )

  A. B. C. D.

  11.為了考察冰川的融化狀況,一支科考隊(duì)在某冰川上設(shè)定一個(gè)以大本營(yíng)O為圓心,半徑為4km的圓形考察區(qū)域,線(xiàn)段P1P2是冰川的部分邊界線(xiàn)(不考慮其它邊界),當(dāng)冰川融化時(shí),邊界線(xiàn)沿著與其垂直的方向朝考察區(qū)域平行移動(dòng),若經(jīng)過(guò)n年,冰川的邊界線(xiàn)P1P2移動(dòng)的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是 .以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別為(−4,9)、(−13、−3).則冰川邊界線(xiàn)移動(dòng)到考察區(qū)域所需的最短時(shí)間為

  A.5年 B. 8年 C.7年 D. 6年

  12.二次函數(shù) 的圖象如圖,下列不等關(guān)系中分析錯(cuò)誤的是

  A. B.

  C. D.

  第Ⅱ卷(非選擇題,共104分)

  二、填空題:

  13.分解因式: =____________

  14.如圖,在平面直角坐標(biāo)系xOy中,△A′B′C′由△ABC繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為_(kāi)____________

  15.△ABC中,AB=AC,DE為AB邊上的垂直平分線(xiàn),垂足為D,交另一邊于E,若∠BED=65°,則∠A=______________

  16.已知函數(shù) , ,則使不等式 成立的 的范圍是______________.

  17.如圖1,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類(lèi)推,圖2017中有2017個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S2017,則S1+S2+S3+…+S2017=___________.

  18. 如圖,邊長(zhǎng)為a的正六邊形內(nèi)有兩個(gè)斜邊長(zhǎng)為a,一個(gè)角為60°的直角三角形(數(shù)據(jù)如圖),則S陰影:S空白的值為_(kāi)_________.

  19.計(jì)算:(1)

  (2)解方程:

  20.今年植樹(shù)節(jié),某校組織師生開(kāi)展植樹(shù)造林活動(dòng),為了了解全校1200名學(xué)生的植樹(shù)情況,隨機(jī)抽樣調(diào)查部分學(xué)生的植樹(shù)情況,制成如下統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖(均不完整).

  植樹(shù)數(shù)量(棵) 頻數(shù) 頻率

  3 5 0.1

  4 20

  5 0.3

  6 10 0.2

  合計(jì) 1

  (1)將統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖補(bǔ)充完整;

  (2)求所抽樣的學(xué)生植樹(shù)數(shù)量的平均數(shù);

  (3)若植樹(shù)數(shù)量不少于5棵的記為“表現(xiàn)優(yōu)秀”,試根據(jù)抽樣數(shù)據(jù),估計(jì)該校1200名學(xué)生“表現(xiàn)優(yōu)秀”的人數(shù)。

  21.如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù) 的圖象與BC邊交于點(diǎn)E.

 ?、女?dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

 ?、飘?dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

  22.已知:如圖,AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點(diǎn),ED與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)F.

  (1)求證:DE為⊙O的切線(xiàn)。

  (2)若3BF=2DF,求tan∠C的值

  23.春節(jié)期間,萬(wàn)達(dá)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.

  (1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

  (2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿(mǎn)足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).

  24.在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

  (1)如圖2,若α=60°,OE=OA,求直線(xiàn)EF的函數(shù)表達(dá)式.

  (2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.

  (3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線(xiàn)AE與直線(xiàn)FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

  25、如圖,直線(xiàn)l:y=﹣3x+3與x軸、y軸分別相交于A(yíng)、B兩點(diǎn),拋物線(xiàn)y=ax2﹣2ax+a+4(a<0)經(jīng)過(guò)點(diǎn)B.

  (1)求該拋物線(xiàn)的函數(shù)表達(dá)式;

  (2)已知點(diǎn)M是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;

  (3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.

 ?、賹?xiě)出點(diǎn)M′的坐標(biāo);

 ?、趯⒅本€(xiàn)l繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到直線(xiàn)l′,當(dāng)直線(xiàn)l′與直線(xiàn)AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,直線(xiàn)l′與線(xiàn)段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線(xiàn)l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線(xiàn)l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

  綿陽(yáng)市中考模擬考數(shù)學(xué)試卷答案

  選擇題:

  1、C 2、D 3、C 4、C 5、B 6、A 7、B 8、D 9、A 10、C

  11、D 12、B

  填空題:

  13: 14、P(1,−1). 15、5 16. 25°或130° 17. 18.

  19:(1)解:原式=

  =

  = (8)

  (2)解:

  (6分)

  ∵

  ∴原方程無(wú)解(8分)

  20.)填表如下:(4分)

  植樹(shù)數(shù)量(棵) 頻數(shù) 頻率

  3 5 0.1

  4 20 0.4

  5 15 0.3

  6 10 0.2

  合計(jì) 50 1

  補(bǔ)圖如圖所示:

  (2)5×3+20×4+15×5+10×650=4.6(棵);(3分)

  (3)由樣本的數(shù)據(jù)知,“表現(xiàn)優(yōu)秀”的百分率為0.3+0.2=0.5

  由此可以估計(jì)該校1200名學(xué)生“表現(xiàn)優(yōu)秀”的人數(shù):1200×0.5=600(人);(4分)

  21. ∴k=3.

  ∴該函數(shù)的解析式為 . (4分)

 ?、朴深}意,知E,F(xiàn)兩點(diǎn)坐標(biāo)分別為E( ,2),F(xiàn)(3, ),

  ∴

  所以當(dāng)k=3時(shí),S有最大值,S最大值= .(11分)

  22.證明:(1)連結(jié)DO、DA,

  ∵AB為O直徑,

  ∴∠CDA=∠BDA=90°,

  ∵CE=EA,

  ∴DE=EA,

  ∴∠1=∠4,

  ∵OD=OA,

  ∴∠2=∠3,

  ∵∠4+∠3=90°,

  ∴∠1+∠2=90°,

  即:∠EDO=90°,

  ∵OD是半徑,

  ∴DE為O的切線(xiàn)(5分)

  (2)

  連接OE

  ∵O、E分別是AB、AC的中點(diǎn),

  ∴OE∥BC

  ∵在△OEF中,BD∥OE

  ∴

  ∵BO= ,

  ∴

  ∵3BF=2DF

  ∴ (6分)

  23.(1)設(shè)甲種商品每件的進(jìn)價(jià)為x元,乙種商品每件的進(jìn)價(jià)為y元,

  依題意得: 2x+3y=270

  3x+2y=230,

  解得: x=30

  y=70.(4分)

  答:甲種商品每件的進(jìn)價(jià)為30元,乙種商品每件的進(jìn)價(jià)為70元.

  (2)設(shè)該商場(chǎng)購(gòu)進(jìn)甲種商品m件,則購(gòu)進(jìn)乙種商品(100-m)件,

  由已知得:m≥4(100-m),

  解得:m≥80.

  設(shè)賣(mài)完甲、乙兩種商品商場(chǎng)的利潤(rùn)為w,

  則w=(40-30)m+(90-70)(100-m)=-10m+2000,

  ∵k=-10<0,w隨m的增大而減小,

  ∴當(dāng)m=80時(shí),w取最大值,最大利潤(rùn)為1200元.(11分)

  故該商場(chǎng)獲利最大的進(jìn)貨方案為甲商品購(gòu)進(jìn)80件、乙商品購(gòu)進(jìn)20件,最大利潤(rùn)為1200元.

  24.解:(1)如圖1,

  過(guò)點(diǎn)E作EH⊥OA于點(diǎn)H,EF與y軸的交點(diǎn)為M.

  ∵OE=OA,α=60°,

  ∴△AEO為正三角形,

  ∴OH=3,EH= =3 .

  ∴E(﹣3,3 ).

  ∵∠AOM=90°,

  ∴∠EOM=30°.

  在Rt△EOM中,

  ∵cos∠EOM= ,

  即 = ,

  ∴OM=4 .

  ∴M(0,4 ).

  設(shè)直線(xiàn)EF的函數(shù)表達(dá)式為y=kx+4 ,

  ∵該直線(xiàn)過(guò)點(diǎn)E(﹣3,3 ),

  ∴﹣3k+4 =3 ,

  解得k= ,

  所以,直線(xiàn)EF的函數(shù)表達(dá)式為y= x+4 .(4分)

  (2)如圖2,

  射線(xiàn)OQ與OA的夾角為α( α為銳角,tanα ).

  無(wú)論正方形邊長(zhǎng)為多少,繞點(diǎn)O旋轉(zhuǎn)角α后得到正方

  形OEFG的頂點(diǎn)E在射線(xiàn)OQ上,

  ∴當(dāng)AE⊥OQ時(shí),線(xiàn)段AE的長(zhǎng)最小.

  在Rt△AOE中,設(shè)AE=a,則OE=2a,

  ∴a2+(2a)2=62,解得a1= ,a2=﹣ (舍去),

  ∴OE=2a= ,∴S正方形OEFG=OE2= .(7分)

  (3)設(shè)正方形邊長(zhǎng)為m.

  當(dāng)點(diǎn)F落在y軸正半軸時(shí).

  如圖3,

  當(dāng)P與F重合時(shí),△PEO是等腰直角三角形,有 = 或 = .

  在Rt△AOP中,∠APO=45°,OP=OA=6,

  ∴點(diǎn)P1的坐標(biāo)為(0,6).

  在圖3的基礎(chǔ)上,

  當(dāng)減小正方形邊長(zhǎng)時(shí),

  點(diǎn)P在邊FG 上,△OEP的其中兩邊之比不可能為 :1;

  當(dāng)增加正方形邊長(zhǎng)時(shí),存在 = (圖4)和 = (圖5)兩種情況.

  如圖4,

  △EFP是等腰直角三角形,

  有 = ,

  即 = ,

  此時(shí)有AP∥OF.

  在Rt△AOE中,∠AOE=45°,

  ∴OE= OA=6 ,

  ∴PE= OE=12,PA=PE+AE=18,

  ∴點(diǎn)P2的坐標(biāo)為(﹣6,18).

  如圖5,

  過(guò)P作PR⊥x軸于點(diǎn)R,延長(zhǎng)PG交x軸于點(diǎn)H.設(shè)PF=n.

  在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,

  在Rt△PEF中,PE2=PF2+EF2=m2+n2,

  當(dāng) = 時(shí),

  ∴PO2=2PE2.

  ∴2m2+2mn+n2=2(m2+n2),得n=2m.

  ∵EO∥PH,

  ∴△AOE∽△AHP,

  ∴ = ,

  ∴AH=4OA=24,

  即OH=18,

  ∴m=9 .

  在等腰Rt△PRH中,PR=HR= PH=36,

  ∴OR=RH﹣OH=18,

  ∴點(diǎn)P3的坐標(biāo)為(﹣18,36).

  當(dāng)點(diǎn)F落在y軸負(fù)半軸時(shí),

  如圖6,

  P與A重合時(shí),在Rt△POG中,OP= OG,

  又∵正方形OGFE中,OG=OE,

  ∴OP= OE.

  ∴點(diǎn)P4的坐標(biāo)為(﹣6,0).

  在圖6的基礎(chǔ)上,當(dāng)正方形邊長(zhǎng)減小時(shí),△OEP的其中

  兩邊之比不可能為 :1;當(dāng)正方形邊長(zhǎng)增加時(shí),存在 = (圖7)這一種情況.

  如圖7,過(guò)P作PR⊥x軸于點(diǎn)R,

  設(shè)PG=n.

  在Rt△OPG中,PO2=PG2+OG2=n2+m2,

  在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.

  當(dāng) = 時(shí),

  ∴PE2=2PO2.

  ∴2m2+2mn+n2=2n2+2m2,

  ∴n=2m,

  由于NG=OG=m,則PN=NG=m,

  ∵OE∥PN,∴△AOE∽△ANP,∴ =1,

  即AN=OA=6.

  在等腰Rt△ONG中,ON= m,

  ∴12= m,

  ∴m=6 ,

  在等腰Rt△PRN中,RN=PR=6,

  ∴點(diǎn)P5的坐標(biāo)為(﹣18,6).

  所以,△OEP的其中兩邊的比能為 :1,點(diǎn)P的坐標(biāo)是:P1(0,6),P2(﹣6,18),

  P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).(12分)

  25、解:(1)令x=0代入y=﹣3x+3,

  ∴y=3,

  ∴B(0,3),

  把B(0,3)代入y=ax2﹣2ax+a+4,

  ∴3=a+4,

  ∴a=﹣1,

  ∴二次函數(shù)解析式為:y=﹣x2+2x+3;(3分)

  (2)令y=0代入y=﹣x2+2x+3,

  ∴0=﹣x2+2x+3,

  ∴x=﹣1或3,

  ∴拋物線(xiàn)與x軸的交點(diǎn)橫坐標(biāo)為﹣1和3,

  ∵M(jìn)在拋物線(xiàn)上,且在第一象限內(nèi),

  ∴0

  過(guò)點(diǎn)M作ME⊥y軸于點(diǎn)E,交AB于點(diǎn)D,

  由題意知:M的坐標(biāo)為(m,﹣m2+2m+3),

  ∴D的縱坐標(biāo)為:﹣m2+2m+3,

  ∴把y=﹣m2+2m+3代入y=﹣3x+3,

  ∴x= ,

  ∴D的坐標(biāo)為( ,﹣m2+2m+3),

  ∴DM=m﹣ = ,

  ∴S= DM•BE+ DM•OE

  = DM(BE+OE)

  = DM•OB

  = × ×3

  =

  = (m﹣ )2+

  ∵0

  ∴當(dāng)m= 時(shí),

  S有最大值,最大值為 ;(8分)

  (3)①由(2)可知:M′的坐標(biāo)為( , );

 ?、谶^(guò)點(diǎn)M′作直線(xiàn)l1∥l′,過(guò)點(diǎn)B作BF⊥l1于點(diǎn)F,

  根據(jù)題意知:d1+d2=BF,

  此時(shí)只要求出BF的最大值即可,

  ∵∠BFM′=90°,

  ∴點(diǎn)F在以BM′為直徑的圓上,

  設(shè)直線(xiàn)AM′與該圓相交于點(diǎn)H,

  ∵點(diǎn)C在線(xiàn)段BM′上,

  ∴F在優(yōu)弧 上,

  ∴當(dāng)F與M′重合時(shí),

  BF可取得最大值,

  此時(shí)BM′⊥l1,

  ∵A(1,0),B(0,3),M′( , ),

  ∴由勾股定理可求得:AB= ,M′B= ,M′A= ,

  過(guò)點(diǎn)M′作M′G⊥AB于點(diǎn)G,

  設(shè)BG=x,

  ∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,

  ∴ ﹣( ﹣x)2= ﹣x2,

  ∴x= ,

  cos∠M′BG= = ,

  ∵l1∥l′,

  ∴∠BCA=90°,

  ∠BAC=45°(14分)


猜你喜歡:

1.四川省綿陽(yáng)市中考語(yǔ)文試卷及答案

2.2016年最新中考數(shù)學(xué)模擬題

3.中考數(shù)學(xué)練習(xí)題模擬試題

4.中考數(shù)學(xué)規(guī)律題及答案解析

5.2018年中考物理考試卷答案解析

3717680