學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級數(shù)學(xué)>

初中數(shù)學(xué)知識點(diǎn)歸納

時(shí)間: 鄭曉823 分享

  初中數(shù)學(xué)的知識龐雜,同學(xué)們要如何歸納知識點(diǎn)呢?接下來是學(xué)習(xí)啦小編為大家?guī)淼某踔袛?shù)學(xué)知識點(diǎn)的歸納,供大家參考。

  初中數(shù)學(xué)知識點(diǎn)歸納(一)

  1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。

  2.全等三角形的性質(zhì): 全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

  3.三角形全等的判定公理及推論有:

  (1)“邊角邊”簡稱“SAS”

  (2)“角邊角”簡稱“ASA”

  (3)“邊邊邊”簡稱“SSS”

  (4)“角角邊”簡稱“AAS”

  (5)斜邊和直角邊相等的兩直角三角形(HL)。

  4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

  5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).

  在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。

  初中數(shù)學(xué)知識點(diǎn)歸納(二)

  1.對稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。

  2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

  (2)角平分線上的點(diǎn)到角兩邊距離相等。

  (3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

  (4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

  (5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。

  3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)

  4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

  5.等腰三角形的判定:等角對等邊。

  6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,

  7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。

  有一個(gè)角是60°的等腰三角形是等邊三角形

  有兩個(gè)角是60°的三角形是等邊三角形。

  8.直角三角形中,30°角所對的直角邊等于斜邊的一半。

  9.直角三角形斜邊上的中線等于斜邊的一半。

  本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

  初中數(shù)學(xué)知識點(diǎn)歸納(三)

  1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。

  2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

  3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。

  4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

  5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0

  實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),能估算無理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。

  初中數(shù)學(xué)知識點(diǎn)歸納(四)

  1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

  2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。

  3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小。

  4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法

  一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。

  初中數(shù)學(xué)知識點(diǎn)歸納(五)

  1.同底數(shù)冪的乘法法則: (m,n都是正數(shù))

  2.. 冪的乘方法則: (m,n都是正數(shù))

  3. 整式的乘法

  (1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

  (2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  (3).多項(xiàng)式與多項(xiàng)式相乘

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  4.平方差公式:

  5.完全平方公式:

  6. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n).

  在應(yīng)用時(shí)需要注意以下幾點(diǎn):

 ?、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.

  ②任何不等于0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.

 ?、廴魏尾坏扔?的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)), 而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如 ,

  ④運(yùn)算要注意運(yùn)算順序.

  7.整式的除法

  單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

  多項(xiàng)式除以單項(xiàng)式: 多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.

  8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  分解因式的一般方法:1. 提公共因式法2. 運(yùn)用公式法3.十字相乘法

  分解因式的步驟:(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;

  (2)再看能否使用公式法;

  (3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;

  (4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

  (5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.

  整式的乘除與分解因式這章內(nèi)容知識點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。

  >>>下一頁更多精彩“初中數(shù)學(xué)知識點(diǎn)歸納”

初中數(shù)學(xué)知識點(diǎn)歸納

初中數(shù)學(xué)的知識龐雜,同學(xué)們要如何歸納知識點(diǎn)呢?接下來是學(xué)習(xí)啦小編為大家?guī)淼某踔袛?shù)學(xué)知識點(diǎn)的歸納,供大家參考。 初中數(shù)學(xué)知識點(diǎn)歸納(一) 1.全等三角形:兩個(gè)三角形的形狀、大
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
993129