2016中考總復習第二十五章數(shù)學知識點歸納
2016中考總復習第二十五章數(shù)學知識點歸納
寒窗苦讀,為的就是在考試中展現(xiàn)出自己最好的水平,大家更應該加把勁,努力學習,認真總結(jié)知識點,接下來是學習啦小編為大家?guī)淼?016中考總復習第二十五章數(shù)學知識點歸納 ,供大家參考。
2016中考總復習第二十五章數(shù)學知識點歸納 :
考點一、比例線段 (3分)
1、比例線段的相關概念
如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n
在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。
在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。
如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。
2、比例的性質(zhì)
(1)基本性質(zhì)
①a:b=c:dad=bc
?、赼:b=b:c
(2)更比性質(zhì)(交換比例的內(nèi)項或外項)
(交換內(nèi)項)
(交換外項)
(同時交換內(nèi)項和外項)
(3)反比性質(zhì)(交換比的前項、后項):
(4)合比性質(zhì):
(5)等比性質(zhì):
3、黃金分割
把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=AB0.618AB
考點二、平行線分線段成比例定理 (3~5分)
三條平行線截兩條直線,所得的對應線段成比例。
推論:
(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。
逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。
考點三、相似三角形 (3~8分)
1、相似三角形的概念
對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數(shù))。
2、相似三角形的基本定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。
用數(shù)學語言表述如下:
∵DE∥BC,∴△ADE∽△ABC
相似三角形的等價關系:
(1)反身性:對于任一△ABC,都有△ABC∽△ABC;
(2)對稱性:若△ABC∽△A’B’C’,則△A’B’C’∽△ABC
(3)傳遞性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,則△ABC∽△A’’B’’C’’。
3、三角形相似的判定
(1)三角形相似的判定方法
?、俣x法:對應角相等,對應邊成比例的兩個三角形相似
?、谄叫蟹ǎ浩叫杏谌切我贿叺闹本€和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
③判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似,可簡述為兩角對應相等,兩三角形相似。
?、芘卸ǘɡ?:如果一個三角形的兩條邊和另一個三角形的兩條邊對應相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應成比例且夾角相等,兩三角形相似。
?、菖卸ǘɡ?:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似,可簡述為三邊對應成比例,兩三角形相似
(2)直角三角形相似的判定方法
?、僖陨细鞣N判定方法均適用
②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。
4、相似三角形的性質(zhì)
(1)相似三角形的對應角相等,對應邊成比例
(2)相似三角形對應高的比、對應中線的比與對應角平分線的比都等于相似比
(3)相似三角形周長的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個邊數(shù)相同的多邊形的對應角相等,對應邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數(shù))
(2)相似多邊形的性質(zhì)
①相似多邊形的對應角相等,對應邊成比例
②相似多邊形周長的比、對應對角線的比都等于相似比
③相似多邊形中的對應三角形相似,相似比等于相似多邊形的相似比
④相似多邊形面積的比等于相似比的平方
6、位似圖形
如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。
性質(zhì):每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。
由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。
看過2016中考總復習第二十五章數(shù)學知識點歸納的還看了: