學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) > 初三數(shù)學(xué)知識點歸納

初三數(shù)學(xué)知識點歸納

時間: 淑航658 分享

初三數(shù)學(xué)知識點歸納

  做好知識點的歸納,會讓有所收獲。下面是學(xué)習(xí)啦小編為大家收集整理的初三數(shù)學(xué)知識點歸納,相信這些文字對你會有所幫助的。

  初三數(shù)學(xué)知識點歸納(一)

  鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。

  初三數(shù)學(xué)知識點歸納(二)

  三角形全等

  全等的條件

  1.兩個三角形對應(yīng)的兩邊及其夾角相等,兩個三角形全等,簡稱“邊角邊”或“SAS”。

  2.兩個三角形對應(yīng)的兩角及其夾邊相等,兩個三角形全等,簡稱“角邊角”或“ASA”。

  3.兩個三角形對應(yīng)的兩角及其一角的對邊相等,兩個三角形全等,簡稱“角角邊”或“AAS”。

  4.兩個三角形對應(yīng)的三條邊相等,兩個三角形全等,簡稱“邊邊邊”或“SSS"。

  5.兩個直角三角形對應(yīng)的一條斜邊和一條直角邊相等,兩個直角三角形全等,簡稱“直角邊、斜邊”或“HL”。

  注意,證明三角形全等沒有“SSA”或“邊邊角”的方法,即兩邊與其中一邊的對角相等無法證明這兩個三角形全等,但從意義上來說,直角三角形的“HL”證明等同“SSA”。

  初三數(shù)學(xué)知識點歸納(三)

  (1)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。

  逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。

  (2)有關(guān)圓周角和圓心角的性質(zhì)和定理

 ?、僭谕瑘A或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  ②一條弧所對的圓周角等于它所對的圓心角的一半。

  直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  圓心角計算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)

  即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

 ?、廴绻粭l弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。

  (3)有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理

 ?、僖粋€三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;

 ?、趦?nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。

 ?、跼=2S△÷L(R:內(nèi)切圓半徑,S:三角形面積,L:三角形周長)

 ?、軆上嗲袌A的連心線過切點(連心線:兩個圓心相連的直線)

 ?、輬AO中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。

  (4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。

  (5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。

  (6)圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。

  (7)圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。

  (8)周長相等,圓面積比長方形、正方形、三角形的面積大。

  圓的知識要領(lǐng)不僅常考公式,又是也會直接出一些關(guān)于定理的試題。

356475