學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一年級必修2數(shù)學(xué)課后習(xí)題

時(shí)間: 慧珍791 分享

  教師們應(yīng)該為他的學(xué)生們準(zhǔn)備什么樣的模擬測試卷去檢測學(xué)生們的學(xué)習(xí)情況呢?下面是學(xué)習(xí)啦小編整理的高一年級必修2數(shù)學(xué)課后習(xí)題以供大家閱讀。

  高一年級必修2數(shù)學(xué)課后習(xí)題

  一、填空題(本大題共14小題,每小題5分,共70分)

  1.直線x=tan60°的傾斜角是________.

  2.給出下列四個(gè)命題:

 ?、俅怪庇谕恢本€的兩條直線互相平行;

 ?、诖怪庇谕黄矫娴膬蓚€(gè)平面互相平行;

 ?、廴糁本€l1,l2與同一平面所成的角相等,則l1,l2互相平行;

 ?、苋糁本€l1,l2是異面直線,則與l1,l2都相交的兩條直線是異面直線.

  其中假命題有________個(gè).

  3.方程y=ax+1a表示的直線可能是________.(填序號(hào))

  4.已知三棱錐S—ABC的各頂點(diǎn)都在一個(gè)半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,則球的體積與三棱錐體積之比是________.

  5.如圖,在正方體ABCD-A1B1C1D1中,E、F、G、H分別為AA1、AB、BB1、B1C1的中點(diǎn),則異面直線EF與GH所成的角等于________.

  6.直線x-2y+1=0關(guān)于直線x=1對稱的直線方程是____________.

  7.經(jīng)過點(diǎn)M(1,1)且在兩坐標(biāo)軸上截距相等的直線是____________.

  8.若圓x2+y2-2x-4y=0的圓心到直線x-y+a=0的距離為22,則a的值為__________.

  9.直線3x+y-23=0截圓x2+y2=4得的劣弧所對的圓心角是____________.

  10.在平面直角坐標(biāo)系中,與點(diǎn)A(1,2)距離為1,且與點(diǎn)B(3,1)的距離為2的直線共有________條.

  11.已知點(diǎn)A(-2,3,4),在y軸上有一點(diǎn)B,且AB=35,則點(diǎn)B的坐標(biāo)為________.

  12.圓x2+y2+x-6y+3=0上兩點(diǎn)P、Q關(guān)于直線kx-y+4=0對稱,則k=________.

  13.如圖,某幾何體的三視圖,其中正視圖是腰長為2的等腰三角形,俯視圖是半徑為1的半圓,則該幾何體的體積為________.

  14.已知圓C:x2+y2-4x-6y+8=0,若圓C和坐標(biāo)軸的交點(diǎn)間的線段恰為圓C′直徑,則圓C′的標(biāo)準(zhǔn)方程為___________.

  二、解答題(本大題共6小題,共90分)

  15.(14分)已知△ABC三邊所在直線方程為AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0.求AC邊上的高所在的直線方程.

  16.(14分)求經(jīng)過點(diǎn)P(6,-4)且被定圓O:x2+y2=20截得的弦長為62的直線AB的方程.

  17.(14分)如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,E為側(cè)棱PC的中點(diǎn),求證PA∥平面EDB.

  18.(16分)如圖所示,在四棱柱(側(cè)棱垂直于底面的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.

  (1)求證D1C⊥AC1;

  (2)設(shè)E是DC上一點(diǎn),試確定E的位置,使D1E∥平面A1BD,并說明理由.

  19.(16分)已知M與兩定點(diǎn)O(0,0)、A(3,0)的距離之比為12.

  (1)求M點(diǎn)的軌跡方程;

  (2)若M的軌跡為曲線C,求C關(guān)于直線2x+y-4=0對稱的曲線C′的方程.

  20.(16分)如圖,在五面體ABC-DEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=22,∠BAD=∠CDA=45°.

  (1)求異面直線CE與AF所成角的余弦值;

  (2)證明CD⊥平面ABF;

  (3)求二面角B-EF-A的正切值.

  高一年級必修2數(shù)學(xué)課后習(xí)題答案

  1.90°

  2.4

  解析?、俸鲆晝芍本€可以相交,②可以相交、平行,③l1、l2可以異面、相交,④與l1、l2都相交的兩直線可以相交.

  3.②

  解析 注意到直線的斜率a與在y軸上的截距1a同號(hào),故②正確.

  4.4π

  解析

  ∵SO⊥底面ABC,

  ∴SO為三棱錐的高線,

  ∴SO=r,又∵O在AB上,AB=2r,AC=2r,∠ACB=90°

  ∴BC=2r,

  ∴VS-ABC=13×12×2r×2r×r=13r3.

  又∵球的體積V=43πr3,∴VVS-ABC=43πr313r3=4π.

  5.π3

  解析 連結(jié)A1B,BC1,A1C1,

  ∵E、F、G、H分別為AA1、AB、BB1、B1C1的中點(diǎn),

  ∴EF∥12A1B,GH∥12BC1,

  ∴∠A1BC1即為異面直線EF與GH所成的角.

  又∵ABCD—A1B1C1D1是正方體

  ∴A1B=BC1=A1C1,

  ∴∠A1BC1=60°.

  6.x+2y-3=0

  解析 直線x-2y+1=0與x=1的交點(diǎn)為A(1,1),點(diǎn)(-1,0)關(guān)于x=1的對稱點(diǎn)為B(3,0)也在所求直線上,∴所求直線方程為y-1=-12(x-1),即x+2y-3=0.

  7.x+y=2或x=y

  解析 截距相等問題關(guān)鍵不要忽略過原點(diǎn)的情況.

  8.2或0

  解析 圓的方程可化為(x-1)2+(y-2)2=5,

  則圓心為(1,2).

  由點(diǎn)到直線的距離公式得d=|1-2+a|2=22,

  解得a=2或0.

  9.60°

  解析 可先求出圓心到直線的距離d=3,由于半徑為2,設(shè)圓心角為θ,則知cosθ2=32,∴θ=60°.

  10.2

  解析 滿足要求的直線應(yīng)為圓心分別為A、B,半徑為1和2的兩圓的公切線,而圓A與圓B相交,所以公切線有兩條.

  11.(0,8,0)或(0,-2,0)

  12.2

  解析 由已知可知PQ的垂直平分線為

  kx-y+4=0,

  ∴直線kx-y+4=0過圓心-12,3,

  ∴-12k+1=0,k=2.

  13.36π

  解析 由三視圖可知,該幾何體是半個(gè)圓錐,底面半徑為1,高為3,故體積為16π×12×3=36π.

  14.x2+(y-3)2=1

  解析 圓C:x2+y2-4x-6y+8=0與x軸沒有交點(diǎn),只與y軸相交,取x=0,得

  y2-6y+8=0解得兩交點(diǎn)分別為(0,2)和(0,4),由此得圓C′的圓心坐標(biāo)為(0,3),半徑為1,所以標(biāo)準(zhǔn)方程為x2+(y-3)2=1.

  15.解 由3x+4y+12=04x-3y+16=0,

  解得交點(diǎn)B(-4,0),

  ∵BD⊥AC,∴kBD=-1kAC=12,

  ∴AC邊上的高線BD的方程為

  y=12(x+4),即x-2y+4=0.

  16.解 由題意知,直線AB的斜率存在,

  且AB=62,OA=25,作OC⊥AB于C.

  在Rt△OAC中,OC=20-(32)2=2.

  設(shè)所求直線的斜率為k,  則直線的方程為y+4=k(x-6),  即kx-y-6k-4=0.

  ∵圓心到直線的距離為2,

  ∴|6k+4|1+k2=2,即17k2+24k+7=0,

  ∴k=-1或k=-717.

  故所求直線的方程為x+y-2=0或7x+17y+26=0.

  17.證明 如圖所示,連結(jié)AC,BD,交于點(diǎn)O,連結(jié)EO,因?yàn)樗倪呅蜛BCD為正方形,

  所以O(shè)為AC的中點(diǎn),又E為PC的中點(diǎn),所以O(shè)E為△PAC的中位線,所以EO∥PA,又EO⊂平面EDB,且PA⊄平面EDB,所以PA∥平面EDB.

  18.(1)證明

  在直四棱柱ABCD-A1B1C1D1中,連結(jié)C1D,

  ∵DC=DD1,

  ∴四邊形DCC1D1是正方形,

  ∴DC1⊥D1C.

  又AD⊥DC,AD⊥DD1,DC∩DD1=D,

  ∴AD⊥平面DCC1D1,D1C⊂平面DCC1D1,

  ∴AD⊥D1C.

  ∵AD,DC1⊂平面ADC1,且AD∩DC1=D,

  ∴D1C⊥平面ADC1,

  又AC1⊂平面ADC1,

  ∴D1C⊥AC1.

  (2)解

  在DC上取一點(diǎn)E,連結(jié)AD1,AE,設(shè)AD1∩A1D=M,BD∩AE=N,連結(jié)MN,

  ∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,須使MN∥D1E,

  又M是AD1的中點(diǎn).

  ∴N是AE的中點(diǎn).

  又易知△ABN≌△EDN,

  ∴AB=DE.  即E是DC的中點(diǎn).

  綜上所述,當(dāng)E是DC的中點(diǎn)時(shí),可使D1E∥平面A1BD.

  19.解 (1)設(shè)M坐標(biāo)為(x,y),由題意得x2+y2(x-3)2+y2=12,整理得(x+1)2+y2=4.

  所以M點(diǎn)的軌跡方程為(x+1)2+y2=4.

  (2)因?yàn)榍€C:(x+1)2+y2=4,

  所以C關(guān)于直線2x+y-4=0對稱的曲線C′是與C半徑相同的圓,故只需求C′的圓心坐標(biāo)即可,設(shè)C′的圓心坐標(biāo)(x0,y0).

  由題意得y0x0+1=122•x0-12+y02-4=0,  解得x0=195y0=125.

  故曲線C′的方程為x-1952+y-1252=4.

  20.(1)解 因?yàn)樗倪呅蜛DEF是正方形,

  所以FA∥ED.  所以∠CED為異面直線CE與AF所成的角.

  因?yàn)镕A⊥平面ABCD,所以FA⊥CD.

  故ED⊥CD.

  在Rt△CDE中,CD=1,ED=22,

  CE=CD2+ED2=3,

  所以cos∠CED=EDCE=223.

  所以異面直線CE與AF所成角的余弦值為223.

  (2)證明 如圖,過點(diǎn)B作BG∥CD,交AD于點(diǎn)G,則∠BGA=∠CDA=45°.由∠BAD=45°,可得BG⊥AB,從而CD⊥AB.

  又CD⊥FA,F(xiàn)A∩AB=A,所以CD⊥平面ABF.

  (3)解 由(2)及已知,可得AG=2,即G為AD的中點(diǎn).

  取EF的中點(diǎn)N,連結(jié)GN,則GN⊥EF.  因?yàn)锽C∥AD,所以BC∥EF.  過點(diǎn)N作NM⊥EF,交BC于點(diǎn)M,  則∠GNM為二面角B-EF-A的平面角.

  連結(jié)GM,可得AD⊥平面GNM,故AD⊥GM,從而BC⊥GM.

  由已知,可得GM=22.由NG∥FA,F(xiàn)A⊥GM,得NG⊥GM.

  在Rt△NGM中,tan∠GNM=GMNG=14.  所以二面角B-EF-A的正切值為14.

看過“高一年級必修2數(shù)學(xué)課后習(xí)題”的人還看了:

1.北師大版高中數(shù)學(xué)必修2課后練習(xí)題

2.高中數(shù)學(xué)必修一課后習(xí)題1.2的參考答案

3.高一必修二數(shù)學(xué)知識(shí)點(diǎn)

4.北師大高中數(shù)學(xué)必修2試題

5.高一數(shù)學(xué)必修2電子課本知識(shí)

939882