學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)復(fù)習(xí)知識(shí):立體幾何

高一數(shù)學(xué)復(fù)習(xí)知識(shí):立體幾何

時(shí)間: 淑航658 分享

高一數(shù)學(xué)復(fù)習(xí)知識(shí):立體幾何

  數(shù)學(xué)上,立體幾何一般作為平面幾何的后續(xù)課程,是三維歐氏空間的幾何的傳統(tǒng)名稱。下面是學(xué)習(xí)啦小編收集整理的高一數(shù)學(xué)《立體幾何》的復(fù)習(xí)知識(shí)點(diǎn)以供大家學(xué)習(xí)。

  高一數(shù)學(xué)復(fù)習(xí)知識(shí):立體幾何

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

  (6)圓臺(tái):

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點(diǎn):
①原來與x軸平行的線段仍然與x平行且長度不變;

 ?、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

317305