學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

時(shí)間: 鳳婷983 分享

  導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念,是高一學(xué)生學(xué)習(xí)數(shù)學(xué)的重點(diǎn)知識(shí)點(diǎn)之一,下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn),希望對(duì)你有幫助。

  高一數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

  1.導(dǎo)數(shù)的常規(guī)問題:

  (1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。

  2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。

  3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

  4.導(dǎo)數(shù)公式

  注:1)常為零,冪降次

  2)對(duì)倒數(shù)(e為底時(shí)直接倒數(shù),a為底時(shí)乘以1/lna)

  3)指不變(特別的,自然對(duì)數(shù)的指數(shù)函數(shù)完全不變,一般的指數(shù)函數(shù)須乘以lna)

  4)正變余,余變正

  5)切割方(切函數(shù)是相應(yīng)割函數(shù)(切函數(shù)的倒數(shù))的平方)

  6)割乘切,反分式

  5.導(dǎo)數(shù)與函數(shù)的性質(zhì)

  單調(diào)性

  ⑴若導(dǎo)數(shù)大于零,則單調(diào)遞增;若導(dǎo)數(shù)小于零,則單調(diào)遞減;導(dǎo)數(shù)等于零為函數(shù)駐點(diǎn),不一定為極值點(diǎn)。需代入駐點(diǎn)左右兩邊的數(shù)值求導(dǎo)數(shù)正負(fù)判斷單調(diào)性。

 ?、迫粢阎瘮?shù)為遞增函數(shù),則導(dǎo)數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導(dǎo)數(shù)小于等于零。

  高一數(shù)學(xué)知識(shí)點(diǎn)

  1、函數(shù)的圖象的平移、及沿向量平移公式易混:

 ?、俸瘮?shù)的圖象的平移為“左+右-,上+下-”;②按向量平移得

  ⑤函數(shù)的圖象是把函數(shù)的圖象沿x軸向左平移a個(gè)單位得到的;函數(shù)(的圖象是把函數(shù)的圖象沿x軸向右平移個(gè)單位得到的;

  函數(shù)+a的圖象是把函數(shù)助圖象沿y軸向上平移a個(gè)單位得到的;函數(shù)+a的圖象是把函數(shù)助圖象沿y軸向下平移個(gè)單位得到的.

  2、求函數(shù)的定義域的常見類型記住了嗎?函數(shù)y=的定義域是 ;

  復(fù)合函數(shù)的定義域,函數(shù)的定義域是[0,1],求的定義域. 函數(shù)的定義域是[], 求函數(shù)的定義域

  3、含參的二次函數(shù)的值域、最值要記得討論。若函數(shù)y=asin2x+2cosx-a-2(a∈R)的最小值為m, 求m的表達(dá)11.

  12.用換元法解題時(shí),易忽略換元前后的等價(jià)性.

  4、 判斷函數(shù)的奇偶性時(shí)注意定義域是否關(guān)于原點(diǎn)對(duì)稱。在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的乘積是奇函數(shù);

  5、根據(jù)定義證明函數(shù)的單調(diào)性時(shí),規(guī)范格式 (取值, 作差, 判正負(fù).)

  6、對(duì)勾函數(shù)的單調(diào)區(qū)間嗎?(該函數(shù)在和上單調(diào)遞增;在和上單調(diào)遞減)這可是一個(gè)應(yīng)用廣泛的函數(shù)!

  高一數(shù)學(xué)學(xué)習(xí)方法

  1,培養(yǎng)良好的學(xué)習(xí)興趣。

  兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛好,愛好它就要去實(shí)踐它,達(dá)到樂在其中,有興趣才會(huì)形成學(xué)習(xí)的主動(dòng)性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂趣出發(fā)上升為自覺的理性的“認(rèn)識(shí)”過程,這自然會(huì)變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?

  (1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問,產(chǎn)生好奇心。

  (2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。

  (3)思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。

  (4)聽課中注意老師講解時(shí)的數(shù)學(xué)思想,多問為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?

  (5)把概念回歸自然。所有學(xué)科都是從實(shí)際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、直角坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來的。只有回歸現(xiàn)實(shí)才能對(duì)概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會(huì)準(zhǔn)確。

  2、 建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。

  習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。
看了<高一數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)>的人還看了:

1.高中數(shù)學(xué)函數(shù)與導(dǎo)數(shù)知識(shí)點(diǎn)匯總

2.高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)

3.高中數(shù)學(xué)常用導(dǎo)數(shù)公式

4.高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

5.文科高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)

2847731