高一數(shù)學(xué)上冊第三章函數(shù)的應(yīng)用練習(xí)題含解析
高一數(shù)學(xué)上冊第三章函數(shù)的應(yīng)用練習(xí)題含解析
課堂上學(xué)習(xí)完高一數(shù)學(xué)知識大家要及時做題進行回顧,下面是學(xué)習(xí)啦小編給大家?guī)淼母咭粩?shù)學(xué)上冊第三章函數(shù)的應(yīng)用練習(xí)題含解析,希望對你有幫助。
高一數(shù)學(xué)函數(shù)的應(yīng)用練習(xí)題含解析
1.某商場售出兩臺取暖器,第一臺提價20%以后按960賣出,第二臺降價20%以后按960元賣出,這兩臺取暖器賣出后,該商場( )
A.不賺不虧 B.賺了80元
C.虧了80元 D.賺了160元
解析:960+960-9601+20%-9601-20%=-80.
答案:C
2.用一根長12 m的鐵絲折成一個矩形的鐵框架,則能折成的框架的最大面積是__________.
解析:設(shè)矩形長為x m,則寬為12(12-2x) m,用面積公式可得S的最大值.
答案:9 m2
3.在x g a%的鹽水中,加入y g b%的鹽水,濃度變?yōu)閏%,則x與y的函數(shù)關(guān)系式為__________.
解析:溶液的濃度=溶質(zhì)的質(zhì)量溶液的質(zhì)量=x•a%+y•b%x+y=
c%,解得y=a-cc-bx=c-ab-cx.
答案:y=c-ab-cx
4.某服裝個體戶在進一批服裝時,進價已按原價打了七五折,他打算對該服裝定一新標(biāo)價在價目卡上,并說明按該價的20%銷售.這樣仍可獲得25%的純利,求此個體戶給這批服裝定的新標(biāo)價y與原標(biāo)價x之間的函數(shù)關(guān)系式為________
解析:由題意得20%y-0.75x=0.7x×25%⇒y=7516x.
答案:y=7516x
5.如果本金為a,每期利率為r,按復(fù)利計算,本利和為y,則存x期后,y與x之間的函數(shù)關(guān)系是________.
解析:1期后y=a+ar=a(1+r);
2期后y=a(1+r)+a(1+r)r=a(1+r)2;…歸納可得x期后y=a(1+r)x.
答案:y=a(1+r)x
6.一批設(shè)備價值a萬元,由于使用磨損,每年比上一年價值降低b%,n年后這批設(shè)備的價值為________萬元.
解析:1年后價值為:a-ab%=a(1-b%),2年后價值為:a(1-b%)-a(1-b%)•b%=a(1-b%)2,
∴n年后價值為:a(1-b%)n.
答案:a(1-b%)n
7.某供電公司為了合理分配電力,采用分段計算電費政策,月用電量x(度)與相應(yīng)電費y(元)之間的函數(shù)關(guān)系的圖象如下圖所示.
(1)填空:月用電量為100度時,應(yīng)交電費______元;
(2)當(dāng)x≥100時,y與x之間的函數(shù)關(guān)系式為__________;
(3)月用電量為260度時,應(yīng)交電費__________元.
解析:由圖可知:y與x之間是一次函數(shù)關(guān)系,用待定系數(shù)法可求解析式.
答案:(1)60 (2)y=12x+10 (3)140
8.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”.計費方法如下表:
每戶每月用水量 水價
不超過12 m3的部分 3元/m3
超過12 m3但不超過18 m3的部分 6元/m3
超過18 m3的部分 9元/m3
若某戶居民本月交納的水費為48元,則此戶居民本月用水量為__________m3.
解析:設(shè)每戶每月用水量為x,水價為y元,則
y=3x,018,
即y=3x,018.
∴48=6x-36,∴x=14.
答案:14
9.國家收購某種農(nóng)產(chǎn)品的價格是120元/擔(dān),其中征稅標(biāo)準(zhǔn)為每100元征8元(叫做稅率為8個百分點,即8%),計劃收購m萬擔(dān),為了減輕農(nóng)民負擔(dān),決定稅率降低x個百分點,預(yù)計收購量可增加2x個百分點.
(1)寫出稅收y(萬元)與x的函數(shù)關(guān)系式;
(2)要使此項稅收在稅率調(diào)整后,不低于原計劃的78%,試確定x的范圍.
解析:(1)y=120×m•[1+(2x)%]×(8%-x%)=
-0.024m(x2+42x-400)(0
(2)-0.024m(x2+42x-400)≥120×m×8%×78%,
即x2+42x-88≤0,(x+44)(x-2)≤0,
解得-44≤x≤2.
又∵0
10.有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCO的三邊組成,隧道的最大高度為4.9 m,AB=10 m,BC=2.4 m.現(xiàn)把隧道的橫斷面放在平面直角坐標(biāo)系中,若有一輛高為4 m,寬為2 m的裝有集裝箱的汽車要通過隧道.問:如果不考慮其他因素,汽車的右側(cè)離開隧道右壁至少多少米才不至于碰到隧道頂部(拋物線部分為隧道頂部,AO、BC為壁)?
解析:由已知條件分析,得知拋物線頂點坐標(biāo)為(5,2.5),C點的坐標(biāo)為(10,0),所以設(shè)拋物線的解析式為
y=a(x-5)2+2.5,①
把(10,0)代入①得0=a(10-5)2+2.5,
解得a=-110,y=-110(x-5)2+2.5.
當(dāng)y=4-2.4=1.6時,1.6=-110(x-5)2+2.5,
即(x-5)2=9,解得x1=8,x2=2.
顯然,x2=2不符合題意,舍去,所以x=8.
OC-x=10-8=2.
故汽車應(yīng)離開右壁至少2 m才不至于碰到隧道頂部.
高一數(shù)學(xué)上冊第三章函數(shù)的應(yīng)用練習(xí)題含解析相關(guān)文章:
1.高一數(shù)學(xué)統(tǒng)計練習(xí)題含答案解析(3)
2.高一數(shù)學(xué)必修1函數(shù)練習(xí)題及答案
3.高一數(shù)學(xué)必修一函數(shù)練習(xí)題及答案
4.高一數(shù)學(xué)必修一函數(shù)練習(xí)題及答案