高考數(shù)學(xué)知識(shí)點(diǎn)大梳理+逆襲數(shù)學(xué)的技能與方法
導(dǎo)讀:下面學(xué)習(xí)啦網(wǎng)的小編給你們帶來(lái)了《高考數(shù)學(xué)易忘/易錯(cuò)/易混知識(shí)點(diǎn)大梳理)》供考生們參考。
高考數(shù)學(xué)易忘/易錯(cuò)/易混知識(shí)點(diǎn)大梳理
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。
2.在應(yīng)用條件時(shí),易忽略是空集的情況
3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?
4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別。
6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。
7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。
8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)求法
11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題)。這幾種基本應(yīng)用你掌握了嗎?
14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。
17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?
18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”。
19.絕對(duì)值不等式的解法及其幾何意義是什么?
20.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?
21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。
22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。
23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘。
24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?
25.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?)
26.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?
(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
27.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。
28..正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
29.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
30.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
31.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。異角化同角,異名化同名,高次化低次)
32.反正弦、反余弦、反正切函數(shù)的取值范圍要搞清楚。
33.你還記得某些特殊角的三角函數(shù)值嗎?
34.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?
35.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”。
(2)方程表示的圖形的平移為“左+右-,上-下+”。
(3)點(diǎn)的平移公式:點(diǎn)按向量平移到點(diǎn)。
36.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)
37.正弦定理時(shí)易忘比值還等于2R.
38.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?
39. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?
40. 直線在兩坐標(biāo)軸上的截距相等,但不要忘記當(dāng)直線過(guò)原點(diǎn)時(shí),直線在兩坐標(biāo)軸上的截距都是0,截距也相等。
41.解決線性規(guī)劃問(wèn)題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。
?、僭O(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。
42.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?
43.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?
44. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)
45. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱,存在性問(wèn)題都在下進(jìn)行)。
46.解析幾何問(wèn)題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?
47.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問(wèn)題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
48.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過(guò)程跨步太大。
49.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
50.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。
51.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?
52. 兩條異面直線所成的角的范圍:0﹤α≤90,直線與平面所成的角的范圍:0o≤α≤90,二面角的平面角的取值范圍:0≤α≤180。
53.你知道異面直線上兩點(diǎn)間的距離公式如何運(yùn)用嗎?
54.平面圖形的翻折,立體圖形的展開等一類問(wèn)題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。
55.立幾問(wèn)題的求解分為“作”,“證”,“算”三個(gè)環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?
56.棱柱及其性質(zhì)、平行六面體與長(zhǎng)方體及其性質(zhì)。這些知識(shí)你掌握了嗎?(注意運(yùn)用向量的方法解題)
57.球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。這些知識(shí)你掌握了嗎?
58. 解排列組合問(wèn)題的依據(jù)是:
分類相加,分步相乘,有序排列,無(wú)序組合。
解排列組合問(wèn)題的規(guī)律是:
相鄰問(wèn)題捆綁法;不鄰問(wèn)題插空法;多排問(wèn)題單排法;定位問(wèn)題優(yōu)先法;定序問(wèn)題倍縮法;多元問(wèn)題分類法;有序分配問(wèn)題法;選取問(wèn)題先排后排法;至多至少問(wèn)題間接法。
59.二項(xiàng)式系數(shù)與展開式某一項(xiàng)的系數(shù)易混,第r+1項(xiàng)的二項(xiàng)式系數(shù)為。二項(xiàng)式系數(shù)最大項(xiàng)與展開式中系數(shù)最大項(xiàng)易混。二項(xiàng)式系數(shù)最大項(xiàng)為中間一項(xiàng)或兩項(xiàng);展開式中系數(shù)最大項(xiàng)的求法要用解不等式組來(lái)確定r.
60.你掌握了三種常見的概率公式嗎?
?、俚瓤赡苁录母怕使?②互斥事件有一個(gè)發(fā)生的概率公式;③相互獨(dú)立事件同時(shí)發(fā)生的概率公式。
61. 二項(xiàng)式展開式的通項(xiàng)公式、n次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生k次的概率易記混。
62.求分布列的解答題你能把步驟寫全嗎?
63..你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對(duì)任一正態(tài)總體來(lái)說(shuō),取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于的概率)
易錯(cuò)點(diǎn) 1遺忘空集致誤
錯(cuò)因分析由于空集是任何非空集合的真子集,因此,對(duì)于集合B,就有B=A,φ≠B,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。
規(guī)避絕招空集是一個(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。
易錯(cuò)點(diǎn) 2忽視集合元素的三性致誤
錯(cuò)因分析集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。
規(guī)避絕招在解題時(shí)可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。
易錯(cuò)點(diǎn) 3四種命題的結(jié)構(gòu)不明致誤
錯(cuò)因分析如果原命題是“若A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。
這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。
另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a,b都是奇數(shù)”。
規(guī)避絕招在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。
易錯(cuò)點(diǎn) 4充分必要條件顛倒致誤
錯(cuò)因分析對(duì)于兩個(gè)條件A,B,如果A=B成立,則A是B的充分條件,B是A的必要條件;如果B=A成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件。
規(guī)避絕招解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問(wèn)題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
易錯(cuò)點(diǎn) 5邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤
錯(cuò)因分析在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:
p∨q真p真或q真,
p∨q假p假且q假(概括為一真即真);
p∧q真p真且q真,
p∧q假p假或q假(概括為一假即假);
┐p真p假,┐p假p真(概括為一真一假)。
規(guī)避絕招記住以上判斷方法。
易錯(cuò)點(diǎn) 6求函數(shù)定義域忽視細(xì)節(jié)致誤
錯(cuò)因分析函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數(shù)的定義域。
規(guī)避絕招在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開放式非負(fù);
(3)真數(shù)大于0;
(4)0的0次冪沒有意義。
函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
易錯(cuò)點(diǎn) 7帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤
錯(cuò)因分析帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:
一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;
二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問(wèn)題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。
規(guī)避絕招對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
易錯(cuò)點(diǎn) 8求函數(shù)奇偶性的常見錯(cuò)誤
錯(cuò)因分析求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>
規(guī)避絕招判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。
在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。
易錯(cuò)點(diǎn) 9抽象函數(shù)中推理不嚴(yán)密致誤
錯(cuò)因分析很多抽象函數(shù)問(wèn)題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。
規(guī)避絕招解答抽象函數(shù)問(wèn)題要注意特殊賦值法的應(yīng)用,通過(guò)特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。
抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書寫規(guī)范。
易錯(cuò)點(diǎn) 10函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯(cuò)因分析如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。
規(guī)避絕招 函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。
易錯(cuò)點(diǎn) 11混淆兩類切線致誤
錯(cuò)因分析曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過(guò)一個(gè)點(diǎn)的切線是指過(guò)這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過(guò)一個(gè)點(diǎn)的切線可能不止一條。
規(guī)避絕招求解曲線的切線問(wèn)題時(shí),首先要區(qū)分是什么類型的切線。
易錯(cuò)點(diǎn) 12混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。
規(guī)避絕招一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
易錯(cuò)點(diǎn) 13導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。
出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。
規(guī)避絕招可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
易錯(cuò)點(diǎn) 14用錯(cuò)基本公式致誤
錯(cuò)因分析等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。
規(guī)避絕招解題時(shí)一定要記對(duì)、用對(duì)。
易錯(cuò)點(diǎn) 15an,Sn關(guān)系不清致誤
錯(cuò)因分析在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:
這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。
規(guī)避絕招當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過(guò)數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。
易錯(cuò)點(diǎn) 16對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤
錯(cuò)因分析等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。
一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
規(guī)避絕招解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問(wèn)題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問(wèn)題時(shí)要注意這個(gè)特殊情況。
易錯(cuò)點(diǎn) 17數(shù)列中的最值錯(cuò)誤
錯(cuò)因分析列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。
但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值時(shí),能夠取到最值求解出錯(cuò)。
規(guī)避絕招 在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。
易錯(cuò)點(diǎn) 18錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤
錯(cuò)因分析錯(cuò)位相減求和法的適用環(huán)境是:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和?;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,得到的和式要分三個(gè)部分:
(1)原來(lái)數(shù)列的第一項(xiàng);
(2)一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和;
(3)原來(lái)數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。
高考黑馬逆襲數(shù)學(xué)的技能與方法
前言
數(shù)學(xué)是高考最能拉開差距的科目,如何學(xué)好數(shù)學(xué)也成了首當(dāng)其沖的要?jiǎng)?wù)。
其實(shí),高中學(xué)生學(xué)數(shù)學(xué)靠的也是一個(gè)字:悟!
1先看筆記后做作業(yè)
有的同學(xué)感到,老師講過(guò)的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,同學(xué)們對(duì)教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過(guò)的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。
2做題之后加強(qiáng)反思
同學(xué)們一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過(guò)的每道題加以反思,總結(jié)一下自己的收獲。要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問(wèn)題成串。日久天長(zhǎng),構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。俗話說(shuō):“有錢難買回頭看”。我們認(rèn)為,做完作業(yè),回頭細(xì)看,價(jià)值極大。這個(gè)回頭看,是學(xué)習(xí)過(guò)程中很重要的一個(gè)環(huán)節(jié)。要看看自己做對(duì)了沒有;還有什么別的解法;題目處于知識(shí)體系中的什么位置;解法的本質(zhì)什么;題目中的已知與所求能否互換,能否進(jìn)行適當(dāng)增刪改進(jìn)。有了以上五個(gè)回頭看,學(xué)生的解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大。
有的同學(xué)認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。其實(shí)不然。一般說(shuō)做的題太少,很多熟能生巧的問(wèn)題就會(huì)無(wú)從談起。因此,應(yīng)該適當(dāng)?shù)囟嘧鲱}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。打個(gè)比喻:有很多人,因?yàn)楣ぷ鞯男枰瑤缀跆焯於荚趯懽?。結(jié)果,寫了幾十年的字了,他寫字的水平能有什么提高嗎?一般說(shuō),他寫字的水平常常還是原來(lái)的水平。要把提高當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來(lái),要總結(jié)反思,水平才能長(zhǎng)進(jìn)。
3主動(dòng)復(fù)習(xí)總結(jié)提高
進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。怎樣做章節(jié)總結(jié)呢?
(1)要把課本,筆記,區(qū)單元測(cè)驗(yàn)試卷,校周末測(cè)驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過(guò)一會(huì)兒要摘錄的。要養(yǎng)成一個(gè)習(xí)慣,在讀材料時(shí)隨時(shí)做標(biāo)記,告訴自己下次再讀這份材料時(shí)的閱讀重點(diǎn)。長(zhǎng)期保持這個(gè)習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。這樣積累起來(lái)的資料才有活力,才能用的上。
(2)把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識(shí),一部分是典型問(wèn)題。要把對(duì)技能的要求(對(duì)“鋸,斧,鑿子…”的使用總結(jié)),列進(jìn)這兩部分中的一部分,不要遺漏。
(3)在基礎(chǔ)知識(shí)的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會(huì)兩用。即:會(huì)代字表述,會(huì)圖象符號(hào)表述,會(huì)推導(dǎo)證明。同時(shí)能從正反兩方面對(duì)其進(jìn)行應(yīng)用。
(4)把重要的,典型的各種問(wèn)題進(jìn)行編隊(duì)。(怎樣做“板凳,椅子,書架…”)要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問(wèn)題間的來(lái)龍去脈。就象我們欣賞一場(chǎng)團(tuán)體操表演,我們不能只盯住一個(gè)人看,看他從哪跑到哪,都做了些什么動(dòng)作。我們一定要居高臨下地看,看全場(chǎng)的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無(wú)益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
(5)總結(jié)那些尚未歸類的問(wèn)題,作為備注進(jìn)行補(bǔ)充說(shuō)明。
(6)找一份適當(dāng)?shù)臏y(cè)驗(yàn)試卷。一定要計(jì)時(shí)測(cè)驗(yàn)。然后再對(duì)照答案,查漏補(bǔ)缺。
4主動(dòng)改錯(cuò),錯(cuò)不重犯
一定要重視改錯(cuò)工作,做到錯(cuò)不再犯。高中數(shù)學(xué)課沒有那么多時(shí)間,除了少數(shù)幾種典型錯(cuò),其它錯(cuò)誤,不能一一顧及。如果能及時(shí)改錯(cuò),那么錯(cuò)誤就可能轉(zhuǎn)變?yōu)樨?cái)富, 成為不再犯這種錯(cuò)誤的預(yù)防針。但是,如果不能及時(shí)改錯(cuò),這個(gè)錯(cuò)誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的同學(xué)認(rèn)為,自己考試成績(jī)上不去,是因?yàn)?自己做題太粗心。而且,自己特愛粗心。打一個(gè)比方。比如說(shuō),學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程 都可以講的清清楚楚。如果新司機(jī)真正掌握了這一套,請(qǐng)問(wèn),可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習(xí)。一兩次能正確地完成任務(wù),并不能說(shuō)明永 遠(yuǎn)不出錯(cuò)。練習(xí)的數(shù)量不夠,往往是學(xué)生出錯(cuò)的真正原因。大家一定要看到,如果,自己的基礎(chǔ)背景是地雷密布,隱患無(wú)窮,那么,今后的數(shù)學(xué)將是難以學(xué)好的。
5圖是高中數(shù)學(xué)的生命線
圖是初等數(shù)學(xué)的生命線,能不能用圖支撐思維活動(dòng)是能否學(xué)好初等數(shù)學(xué)的關(guān)鍵。無(wú)論是幾何還是代數(shù),拿到題的第一件事都應(yīng)該是畫圖。有的時(shí)候,一些簡(jiǎn)單題只要把圖畫出來(lái),答案就直接出來(lái)了。遇到難題時(shí)就更應(yīng)該畫圖,圖可以清楚地呈現(xiàn)出已知條件。而且解難題時(shí)至少一問(wèn)畫一個(gè)圖,這樣看起來(lái)清晰,做題的時(shí)候也好捋順?biāo)悸贰?/p>
首先要在腦中有畫圖的意識(shí),形成條件反射,拿到一道數(shù)學(xué)題就先畫圖。而且要有用圖的意識(shí),畫了圖而不用,等于沒畫。
有了畫圖、用圖的意識(shí)后,要具備畫圖的技能。有人說(shuō),畫圖還不簡(jiǎn)單啊,學(xué)數(shù)學(xué)有誰(shuí)不會(huì)畫圖啊。還真不要小看這一點(diǎn)。很多同學(xué)畫圖沒有好習(xí)慣,不會(huì)用畫圖工具。圓規(guī)、尺子不會(huì)用,畫出圖來(lái)非常難看。不是要求大家把圖畫的多漂亮,而是清晰、干凈、準(zhǔn)確,這樣才會(huì)對(duì)做題有幫助。改正一下自己在畫圖時(shí)的一些壞習(xí)慣,就能提高畫圖的能力。
最重要的,也是高中生最需要培養(yǎng)的就是解圖能力。就是根據(jù)給定圖形能否提煉出更多有用信息;反之亦然,根據(jù)已知條件能否畫出準(zhǔn)確圖形。
現(xiàn)在高考中會(huì)出現(xiàn)數(shù)學(xué)實(shí)驗(yàn)題,這是新課標(biāo)的產(chǎn)物,就是為了考驗(yàn)學(xué)生的綜合能力。題雖然新,但只要細(xì)心分析就會(huì)發(fā)現(xiàn),其實(shí)解題運(yùn)用的知識(shí)都是你學(xué)過(guò)的。高考題是非常嚴(yán)謹(jǐn)?shù)?,出題不可能超出教學(xué)大綱。
學(xué)好數(shù)學(xué)的核心就是悟,悟就是理解,為了理解就要看做想……??垂P記,做作業(yè)后的反思,章節(jié)的總結(jié),改錯(cuò)誤時(shí)得找原因,整理復(fù)習(xí)資料,在課外讀物中開闊眼界……,這一系列的活動(dòng)都是“悟”。要自覺去“悟”,就要提高主動(dòng)性,做好學(xué)習(xí)計(jì)劃,合理安排時(shí)間,制定好自己的長(zhǎng)期的短期的目標(biāo)。這一切措施,就是我們上面所說(shuō)的5條學(xué)習(xí)方法。
規(guī)避絕招 用錯(cuò)位相減法求數(shù)列的和時(shí)一定要注意處理好這三個(gè)部分。