學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 2017年高考必備文科數(shù)學(xué)公式_高考文科數(shù)學(xué)公式大全

2017年高考必備文科數(shù)學(xué)公式_高考文科數(shù)學(xué)公式大全

時(shí)間: 鳳婷983 分享

2017年高考必備文科數(shù)學(xué)公式_高考文科數(shù)學(xué)公式大全

  高中數(shù)學(xué)公式非常繁多,是困擾很多高考考生的巨大問題。因此在高考數(shù)學(xué)復(fù)習(xí)階段,文科學(xué)生要熟記需要用到的公式。下面學(xué)習(xí)啦小編給大家?guī)砀呖嘉目票貍鋽?shù)學(xué)公式,希望對你有幫助。

  高考必備文科數(shù)學(xué)公式(一)

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式 tan2A=2tanA/(1-tan2A)

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

  線線平行常用方法總結(jié):

  (1)定義:在同一平面內(nèi)沒有公共點(diǎn)的兩條直線是平行直線。

  (2)公理:在空間中平行于同一條直線的兩只直線互相平行。

  (3)初中所學(xué)平面幾何中判斷直線平行的方法

  (4)線面平行的性質(zhì):如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面的相交,那么這條直線就和兩平面的交線平行。

  (5)線面垂直的性質(zhì):如果兩直線同時(shí)垂直于同一平面,那么兩直線平行。

  (6)面面平行的性質(zhì):若兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,則它們的交線平行。

  線面平行的判定方法:

 ?、哦x:直線和平面沒有公共點(diǎn).

  ( 2)判定定理:若不在平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行

  (3)面面平行的性質(zhì):兩個(gè)平面平行,其中一個(gè)平面內(nèi)的任何一條直線必平行于另一個(gè)平面

  (4)線面垂直的性質(zhì):平面外與已知平面的垂線垂直的直線平行于已知平面

  判定兩平面平行的方法:

  (1)依定義采用反證法

  (2)利用判定定理:如果一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,那么這兩個(gè)平面平行。

  (3)利用判定定理的推論:如果一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面內(nèi)的兩條直線,則這兩平面平行。

  (4)垂直于同一條直線的兩個(gè)平面平行。

  (5)平行于同一個(gè)平面的兩個(gè)平面平行。

  證明線與線垂直的方法:

  (1)利用定義(2)線面垂直的性質(zhì):如果一條直線垂直于這個(gè)平面,那么這條直線垂直于這個(gè)平面的任何一條直線。

  證明線面垂直的方法:

  (1)線面垂直的定義

  (2)線面垂直的判定定理1:如果一條直線與平面內(nèi)的兩條相交直線垂直,則這條直線與這個(gè)平面垂直。

  (3)線面垂直的判定定理2:如果在兩條平行直線中有一條垂直于平面,那么另一條也垂直于這個(gè)平面。

  (4)面面垂直的性質(zhì):如果兩個(gè)平面互相垂直那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。

  (5)若一條直線垂直于兩平行平面中的一個(gè)平面,則這條直線必垂直于另一個(gè)平面。

  判定兩個(gè)平面垂直的方法:

  (1)利用定義(2)判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,則這兩個(gè)平面互相垂直。

  夾在兩個(gè)平行平面之間的平行線段相等。經(jīng)過平面外一點(diǎn)有且僅有一個(gè)平面與已知平面平行。兩條直線被三個(gè)平行平面所截,截得的對應(yīng)線段成比例。

  高考必備文科數(shù)學(xué)公式(二)

  秦九韶三角形中線面積公式:

  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

  其中Ma,Mb,Mc為三角形的中線長.

  平行四邊形的面積=底×高

  梯形的面積=(上底+下底)×高÷2

  直徑=半徑×2 半徑=直徑÷2

  圓的周長=圓周率×直徑=圓周率×半徑×2

  圓的面積=圓周率×半徑×半徑

  長方體的表面積=(長×寬+長×高+寬×高)×2

  長方體的體積 =長×寬×高

  正方體的表面積=棱長×棱長×6

  正方體的體積=棱長×棱長×棱長

  圓柱的側(cè)面積=底面圓的周長×高

  圓柱的表面積=上下底面面積+側(cè)面積

  圓柱的體積=底面積×高

  圓錐的體積=底面積×高÷3

  長方體(正方體、圓柱體)的體積=底面積×高

  定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形

  定理 2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

  定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

  逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

  勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  定理 四邊形的內(nèi)角和等于360°

  四邊形的外角和等于360°

  多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  高考文科數(shù)學(xué)知識點(diǎn)

  高考文科數(shù)學(xué)知識點(diǎn):導(dǎo)數(shù)

  一、綜述

  導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:

  1.導(dǎo)數(shù)的常規(guī)問題:

  (1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。

  2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。

  3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

  二、知識整合

  1.導(dǎo)數(shù)概念的理解。

  2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。

  復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。

  3.要能正確求導(dǎo),必須做到以下兩點(diǎn):

  (1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。

  (2)對于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個(gè)變量求導(dǎo)。

  高考文科數(shù)學(xué)知識點(diǎn):不等式

  不等式這部分知識,滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學(xué)各部分知識融會(huì)貫通,起到了很好的促進(jìn)作用。在解決問題時(shí),要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中。諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的最大值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結(jié)為不等式的求解或證明。

  知識整合

  1.解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰。

  2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,相互轉(zhuǎn)化和相互變用。

  3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰。

  4.證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語言特點(diǎn)。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

  高考文科數(shù)學(xué)知識點(diǎn):立體幾何

  1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個(gè)平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線段相等;

  (6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

♑♑點(diǎn)擊一下更多精彩“高考數(shù)學(xué)公式”♑♑


看了“2017年高考必備文科數(shù)學(xué)公式”的人還看了:

1.2017高考必備數(shù)學(xué)公式

2.2017年高考數(shù)學(xué)公式總結(jié)口訣

3.2017高考文科數(shù)學(xué)復(fù)習(xí)計(jì)劃

4.高考必備的數(shù)學(xué)公式匯總

5.2017高考數(shù)學(xué)口訣整理

6.2017屆高考文科數(shù)學(xué)知識點(diǎn)總結(jié)

7.高考文科數(shù)學(xué)必備公式

8.2017高一數(shù)學(xué)必備公式

2688522