學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) > 河北省定州二中高二4月月考文理科數(shù)學(xué)試卷(2)

河北省定州二中高二4月月考文理科數(shù)學(xué)試卷(2)

時(shí)間: 夏萍1132 分享

河北省定州二中高二4月月考文理科數(shù)學(xué)試卷

  河北省定州二中高二4月月考理科數(shù)學(xué)試卷

  1. (本小題4分)類比平面內(nèi)直角三角形的勾股定理,在空間四面體P-ABC中,記底面△ABC的面積為,三個(gè)側(cè)面的面積分別為,若PA,PB,PC兩兩垂直,則有結(jié)論()

  A. B.

  C. D.

  2. (本小題4分)根據(jù)如圖圖案中的圓圈排列規(guī)則,猜想第5個(gè)圖形中的圓圈個(gè)數(shù)是(  )

  A.19 B.20 C.21 D.22

  $

  3. (本小題4分)把復(fù)數(shù)的共軛復(fù)數(shù)記為,已知?jiǎng)t為( )

  A. B. C. D.

  4. (本小題4分)直線經(jīng)過點(diǎn)傾斜角為,則下列可表示直線參數(shù)方程的是( )

  A. B.

  C. D.

  5. (本小題4分)點(diǎn)為橢圓上一點(diǎn),則到直線的距離最小時(shí)坐標(biāo)為( )

  A. B. C. D.

 ?、蚓?共10小題,共40分)

  6.(本小題4分)在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( )

  (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限

  7. (本小題4分)極坐標(biāo)方程對(duì)應(yīng)的直角坐標(biāo)方程為( )

  A. B.

  C. D.

  8.(本小題4分)用數(shù)學(xué)歸納法證明:時(shí),第二步證明由“”時(shí),左端增加的項(xiàng)數(shù)是( )

  A. B. C. D.

  9.是曲線上任意一點(diǎn),則的最大值是 ( )

  A.36 B.6 C.26 D.25

  10. (本小題4分)設(shè)函數(shù)定義如下表,數(shù)列滿足,且對(duì)任意的自然數(shù)均有,則= (  )

  1 2 3 4 5 4 1 3 5 2 A.1B.2C.4 D.5

  11.(本小題4分)過橢圓C:的右焦點(diǎn)作直線交C于兩點(diǎn),,則的值為( ).

  A. B. C. D.不能確定

  12. (本小題4分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線的參數(shù)方程是,圓的極坐標(biāo)方程是,則直線被圓截得的弦長(zhǎng)為 .

  13. (本小題4分)定義運(yùn)算,則符合條件的復(fù)數(shù)為 .

  14.(本小題4分)若的最小值為 .

  15.(本小題4分)下面的四個(gè)不等式

 ?、缶?共5題,共60分)

  已知:復(fù)數(shù)若,其中都是實(shí)數(shù).

  (1)若復(fù)數(shù)所對(duì)應(yīng)點(diǎn)在曲線上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)點(diǎn)P(x,y)的軌跡C方程;

  (2)過原$點(diǎn)的直線與軌跡C有兩個(gè)不同的交點(diǎn),求直線的斜率k的取值范圍.

  17.(本小題12分)

  在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)). 在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,圓的方程為.

  (1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

  (2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

  18.(本小題12分)

  在直角坐標(biāo)系中,曲線(為參數(shù),),其中0 ≤ α < π,在以O(shè)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線,

  (1)求交點(diǎn)的直角坐標(biāo);

  (2)若相交于點(diǎn)A,相交于點(diǎn)B,求的最大值.

  19.(本小題12分)

  已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線.

  (1)求曲線的普通方程;

  (2)若點(diǎn)在曲線上,點(diǎn),當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求中點(diǎn)的軌跡方程.

  .

  數(shù)列滿足,前n項(xiàng)和.

  (1)寫出;

  (2)猜出的表達(dá)式,并用數(shù)學(xué)歸納法證明.

  1-5 DCBDA 6-11 AABABB 12、 13、 14、3 15、(1)(2)(4)

  16.解析:(1)z=1i-z2=(m-ni)i-(2-2i)=(n-2)+(2+m)i=x+yi,

  復(fù)數(shù)相等,得⇒

  ∵點(diǎn)M(m,n)在曲線y=(x+3)2+1上運(yùn)動(dòng),

  ∴n=(m +3)2+1⇒x+2=(y-2+3)2+1⇒x=(y+1)2-1,即為所求.

  (2)設(shè)過原點(diǎn)的直線的方程是y=kx,代入曲線C的方程,得ky2+(2k-2)y-k=0,Δ=(2k-2)2+4k2=8+2>0恒成立,∴k∈R.

  17.(1);;(2).

  試題解析:()由得直線的普通方程為

  得圓的直角坐標(biāo)方程為

  即.

  (II)的參數(shù)方程代入圓的直角坐標(biāo)方程,得

  ,即

  由于,故可設(shè)是上述方程的兩實(shí)數(shù)根,

  所以,

  又直線過點(diǎn),、兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為、

  所以.

  與交點(diǎn)的直角坐標(biāo)為和(2)最大值為4

  試題解析:(1)曲線的直角坐標(biāo)方程為,

  曲線的直角坐標(biāo)方程為.

  聯(lián)立 解得 或

  所以與交點(diǎn)的直角坐標(biāo)為和

  (2)曲線的極坐標(biāo)方程為,其中

  因此的極坐標(biāo)為,的極坐標(biāo)為

  所以

  當(dāng)時(shí),取得最大值,最大值為4

  19.(1);(2)

  試題解析:(1): ,

  將 代入的普通方程得,即;

  (2)設(shè), 則

  所以,即

  代入,得,即

  中點(diǎn)的軌跡方程為.

  20.解 (1)令n=2,∵a1=,∴S2=a2,

  即a1+a2=3a2.∴a2=.

  令n=3,得S3=a3,

  即a1+a2+a3=6a3,∴a3=.

  令n=4,得S4=a4,

  即a1+a2+a3+a4=10a4,∴a4=.

  (2)猜想an=,下面用數(shù)學(xué)歸納法給出證明.

  ①當(dāng)n=1時(shí),a1==,結(jié)論成立.

  ②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即ak=,

  則當(dāng)n=k+1時(shí),Sk=ak=·=,

  Sk+1=ak+1,

  即Sk+ak+1=ak+1.

  ∴+ak+1=ak+1.

  ∴ak+1==

  =.

  當(dāng)n=k+1時(shí)結(jié)論成立.

  由①②可知,對(duì)一切n∈N*都有an=.


猜你感興趣:

1.四川省資陽市高二期末文理科數(shù)學(xué)試卷

2.七年級(jí)英語4月月考試題

3.高二數(shù)學(xué)上學(xué)期期末試卷(文科含解析)

4.高二月考反思

5.高二數(shù)學(xué)第一次月考試卷及答案

6.初三數(shù)學(xué)第一次月考試卷

3785354