高二數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì)
高二數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì)
教學(xué)設(shè)計(jì)是作為教者,基于對(duì)學(xué)生和教學(xué)任務(wù)的分析,而對(duì)教學(xué)目標(biāo)、教學(xué)方法、教學(xué)材料、教學(xué)進(jìn)度、課程評(píng)估等做出系統(tǒng)設(shè)計(jì)的一門(mén)學(xué)科。 教學(xué)設(shè)計(jì)者經(jīng)常使用教學(xué)技術(shù)以改進(jìn)教學(xué)。下面是學(xué)習(xí)啦小編為大家整理的高二數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì),歡迎參考!
高二數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì)
1.1.1平面直角坐標(biāo)系(一)
學(xué)習(xí)目標(biāo)
1.回顧在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法.
2. 能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題.
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
1、通過(guò)直角坐標(biāo)系,平面上的 與 ( ),曲線與 建立了聯(lián)系,實(shí)現(xiàn)了 。
2、閱讀P3思考得出在直角坐標(biāo)系中解決實(shí)際問(wèn)題的過(guò)程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
問(wèn)題3:(1).如何把平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點(diǎn)和有序?qū)崝?shù)對(duì)(x,y)是怎樣的關(guān)系?
問(wèn)題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說(shuō)明曲線與方程的關(guān)系?
問(wèn)題5:如何刻畫(huà)一個(gè)幾何圖形的位置?
需要設(shè)定一個(gè)參照系
(1)、數(shù)軸 它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
(2)、平面直角坐標(biāo)系 :在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定
(3)、空間直角坐標(biāo)系 :在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定
(4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:A.曲線C上的點(diǎn)坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問(wèn)題6:如何建系?
根據(jù)幾何特點(diǎn)選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。
(1)如果圖形有對(duì)稱(chēng)中心,可以選對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn);
(2)如果圖形有對(duì)稱(chēng)軸,可以選擇對(duì)稱(chēng)軸為坐標(biāo)軸;
(3)使圖形上的特殊點(diǎn)盡可能多的在坐標(biāo)軸上。
◆應(yīng)用示例
例1.已知△ABC的三邊 滿足 ,BE,CF分別為AC,AB上的中線,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系探究BE和CF的位置關(guān)系。(教材P4例1)
◆反饋練習(xí)
1.兩個(gè)定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡。
解:
三、總結(jié)提升
◆本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題
學(xué)習(xí)評(píng)價(jià)
一、自我評(píng)價(jià)
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知點(diǎn)A為定點(diǎn),線段BC在定直線 上滑動(dòng),已知 ,點(diǎn)A到直線 的距離為3,求△ABC的外心的軌跡方程。
2. (選做題)用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
看過(guò)"高二數(shù)學(xué)《平面直角坐標(biāo)系》教學(xué)設(shè)計(jì) "的還看了: