學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級數(shù)學(xué) > 滬科版八年級下冊數(shù)學(xué)全教案

滬科版八年級下冊數(shù)學(xué)全教案

時(shí)間: 妙純901 分享

滬科版八年級下冊數(shù)學(xué)全教案

  好的教案還可以給八年級數(shù)學(xué)教師帶來更多的反思,更好地促進(jìn)教師的專業(yè)成長與發(fā)展。下面是小編為大家精心整理的滬科版八年級下冊數(shù)學(xué)的教案,僅供參考。

  滬科版八年級下冊數(shù)學(xué)教案設(shè)計(jì)

  《17.1 一元二次方程》

  一、教學(xué)目標(biāo)

  1.掌握一元二次方程的定義,能夠判斷一個(gè)方程是否是一元二次方程.

  2.能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  二、(重)難點(diǎn)預(yù)見

  重點(diǎn):知道什么叫做一元二次方程,能夠判斷一個(gè)方程是否是一元二次方程. 難點(diǎn):能夠?qū)⒁辉畏匠袒癁橐话阈问讲⒋_定a,b,c的值.

  三、學(xué)法指導(dǎo)

  結(jié)合教材和預(yù)習(xí)學(xué)案,先獨(dú)立思考,遇到困難小對子之間進(jìn)行幫扶,完成學(xué)習(xí)任務(wù).

  四、教學(xué)過程

  開場白設(shè)計(jì):

  一元二次方程是初中數(shù)學(xué)中非常重要的內(nèi)容,它在實(shí)際生活中有著非常廣泛的應(yīng)用.什么形式的方程是一元二次方程?這樣的方程怎么解答呢?它又能解決哪些問題呢?帶著這些問題,讓我們一起學(xué)習(xí)《一元二次方程》這一章,今天我們來學(xué)習(xí)第一節(jié)課,同學(xué)們肯定有很多新的收獲.

  1、憶一憶

  在前面我們曾經(jīng)學(xué)習(xí)了什么叫做一元一次方程?一元指的是什么含義?一次呢?你能猜想什么叫做一元二次方程嗎?

  學(xué)法指導(dǎo):

  本節(jié)課學(xué)習(xí)一元二次方程先讓學(xué)生回憶一元一次方程.學(xué)習(xí)四邊形可以讓學(xué)生回憶三角形,學(xué)習(xí)四邊形的邊、角、頂點(diǎn),可以讓學(xué)生回憶三角形的邊、角、頂點(diǎn),則可達(dá)到水到渠成的效果.

  2、想一想

  請同學(xué)們根據(jù)題意,只列出方程,不進(jìn)行解答:

  (1)一個(gè)矩形的長比寬多2cm,矩形的面積是15cm²,求這個(gè)矩形的長和寬.

  (2)兩個(gè)連續(xù)正整數(shù)的平方和是313,求這兩個(gè)正整數(shù).

  (3)直角三角形三邊的長都是整數(shù),它的斜邊長為13cm,兩條直角邊的差為7cm,求兩條直角邊的長.

  預(yù)習(xí)困難預(yù)見:

  (1)學(xué)生在列方程時(shí)沒有搞清楚“平方和”與“和的平方”的區(qū)別,以至于把方程列錯(cuò)了.

  (2)學(xué)生在解答第(3)題時(shí),設(shè)未知數(shù)時(shí)忘記帶單位.

  (3)還有的同學(xué)沒有注意只列方程,以至于學(xué)生列出方程后嘗試著解方程,導(dǎo)致耽誤了一些時(shí)間.

  改進(jìn)措施:

  教師巡視指導(dǎo),發(fā)現(xiàn)失誤及時(shí)引導(dǎo);小組內(nèi)互查,辯論,質(zhì)疑.

  3、議一議

  請同學(xué)們將上面的方程按照以下要求進(jìn)行整理:

  (1)使方程的右邊為0(2)方程的左邊按x的降冪排列.我們會(huì)得到:

 ?、?② ③

  你能發(fā)現(xiàn)上面三個(gè)方程有什么共同點(diǎn)?

  _____________________叫做一元二次方程.在定義中著重強(qiáng)調(diào)了幾點(diǎn)?哪幾點(diǎn)?如果給你一個(gè)方程,讓你判定它是否是一元二次方程,你關(guān)鍵看哪幾方面?

  學(xué)法指導(dǎo)

  學(xué)習(xí)一元二次方程的概念,讓同學(xué)們剖析定義,總結(jié)判定一個(gè)方程是否是一元二次方程的方法.

  4、試一試

  下面方程是一元二次方程嗎?為什么?

 ?、賏x-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y²-4y=0

  方法提升:

  由一元二次方程的定義可知,只有同時(shí)滿足下列三個(gè)條件:①整式方程;②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個(gè)條件的方程都不是一元二次方程.

  口訣生成:

  判斷一元二次方程并不難,三個(gè)條件要找全:一元,二次,整式判,正確答案就出現(xiàn).

  5、學(xué)一學(xué)

  一元二次方程都可以化為ax²+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax²,bx,c 分別稱為這個(gè)方程的二次項(xiàng),一次項(xiàng)和常數(shù)項(xiàng),a,b分別稱為二次項(xiàng)系數(shù),一次項(xiàng)系數(shù).你能指出下列方程的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)嗎?請你用a,b,c表示出來.

  八年級數(shù)學(xué)復(fù)習(xí)提綱

  第一章 勾股定理

  1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;即 。

  2.勾股定理的證明:用三個(gè)正方形的面積關(guān)系進(jìn)行證明(兩種方法)。

  3.勾股定理逆定理:如果三角形的三邊長 , , 滿足 ,那么這個(gè)三角形是直角三角形。滿足 的三個(gè)正整數(shù)稱為勾股數(shù)。

  第二章 實(shí)數(shù)

  1.平方根和算術(shù)平方根的概念及其性質(zhì):

  (1)概念:如果 ,那么 是 的平方根,記作: ;其中 叫做 的算術(shù)平方根。

  (2)性質(zhì):①當(dāng) ≥0時(shí), ≥0;當(dāng) <0時(shí), 無意義;② = ;③ 。

  2.立方根的概念及其性質(zhì):

  (1)概念:若 ,那么 是 的立方根,記作: ;

  (2)性質(zhì):① ;② ;③ =

  3.實(shí)數(shù)的概念及其分類:

  (1)概念:實(shí)數(shù)是有理數(shù)和無理數(shù)的統(tǒng)稱;

  (2)分類:按定義分為有理數(shù)可分為整數(shù)的分?jǐn)?shù);按性質(zhì)分為正數(shù)、負(fù)數(shù)和零。無理數(shù)就是無限不循環(huán)小數(shù);小數(shù)可分為有限小數(shù)、無限循環(huán)小數(shù)和無限不循環(huán)小數(shù);其中有限小數(shù)和無限循環(huán)小數(shù)稱為分?jǐn)?shù)。

  4.與實(shí)數(shù)有關(guān)的概念: 在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義與有理數(shù)范圍內(nèi)的意義完全一致;在實(shí)數(shù)范圍內(nèi),有理數(shù)的運(yùn)算法則和運(yùn)算律同樣成立。每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示;反過來,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對應(yīng)的。因此,數(shù)軸正好可以被實(shí)數(shù)填滿。

  5.算術(shù)平方根的運(yùn)算律: ( ≥0, ≥0); ( ≥0, >0)。

  第三章 圖形的平移與旋轉(zhuǎn)

  1.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等;對應(yīng)線段平行且相等,對應(yīng)角相等。

  2.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)。這點(diǎn)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過旋轉(zhuǎn),圖形點(diǎn)的每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同和角度;任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

  3.作平移圖與旋轉(zhuǎn)圖。


猜你感興趣:

1.滬科版八年級數(shù)學(xué)下冊目錄

2.滬科版八年級下冊數(shù)學(xué)目錄

3.滬科版八年級數(shù)學(xué)教案

4.八年級數(shù)學(xué)下冊教學(xué)計(jì)劃滬科版

5.滬科版八年級下冊數(shù)學(xué)教學(xué)計(jì)劃

1844752