初二下冊數(shù)學??贾R點總結(jié)
數(shù)學是一門基礎性的科學,值得每個人去學習,尤其是孩子,更要去學習數(shù)學,并且以此來構(gòu)架自己的思維體系。下面小編為大家?guī)沓醵聝詳?shù)學??贾R點總結(jié),希望大家喜歡!
初二下冊數(shù)學??贾R點
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的`曲線連接起來。
初二下冊數(shù)學必背知識點
第十六章分式
一.知識框架
二.知識概念
1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等于0
3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C為整式,且C≠0)
5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b _ c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b_d/c
7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.
8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
分式和分數(shù)有著許多相似點。教師在講授本章內(nèi)容時,可以對比分數(shù)的特點及性質(zhì),讓學生自主學習。重點在于分式方程解實際應用問題。
第十七章反比例函數(shù)
一.知識框架
二.知識概念
1.反比例函數(shù):形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k
2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和y=-x。對稱中心是:原點
3.性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
在學習反比例函數(shù)時,教師可讓學生對比之前所學習的一次函數(shù)啟發(fā)學生進行對比性學習。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。
第十八章勾股定理
一.知識框架
二知識概念
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
2.定理:經(jīng)過證明被確認正確的命題叫做定理。
3.我們把題設、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
勾股定理是直角三角形具備的重要性質(zhì)。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題??梢酝ㄟ^自主學習的發(fā)展體驗獲取數(shù)學知識的感受
第十九章四邊形
一.知識框架
二.知識概念
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5.直角三角形斜邊上的中線等于斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
15.正方形判定定理:1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學生在學習過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結(jié)四邊形的特點,這樣有利于學生對知識的把握。
第二十章數(shù)據(jù)的分析
一.知識框架
二.知識概念
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。
2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。
本章內(nèi)容要求學生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學生的統(tǒng)計意識和數(shù)據(jù)處理的方法與能力。在教學過程中,以生活實例為主,讓學生體會到數(shù)據(jù)在生活中的重要性。
初二下冊數(shù)學復習知識點
1、 二次根式成立的條件:被開方數(shù)是一個非負數(shù)。
2、 二次根式的實質(zhì):是一個非負數(shù)的算術(shù)平方根。因此√a≥0。
3、 兩個公式:(√a)2=a(a≥0);√a2=∣a∣.
4、 二次根式的乘除:√a ×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).
5、 最簡二次根式:⑴被開方數(shù)不含分母;⑵被開方數(shù)中不含能開的盡方的因數(shù)或因式。
6、 二次根式的加減:先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
7、 利用公式:(a+b)(a-b)=a2-b2 ;(a±b)2=a2±2ab+b2.
第二十二章 一元二次方程
1、 定義:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
① 是整式方程,②未知數(shù)的最高次數(shù)是二次,③只含有一個未知數(shù),④二次項系數(shù)不為零。
2、 化為一元二次方程的一般形式:按降冪排列,二次項系數(shù)通常為正,右端為零。
3、 一元二次方程的根:代入使方程成立。
4、 一元二次方程的解法:①配方法:移項→二次項系數(shù)化為一→兩邊同時加上一次項系數(shù)的一半→配方→開方→寫出方程的解。
②公式法:x=(-b±√b2 -4ac )/ 2a .③因式分解法:右端為零,左端分解為兩個因式的乘積。
5、 一元二次方程的根的判別式:①當△>0時,方程有兩個不相等的實數(shù)根,②當△=0時,方程有兩個相等的實數(shù)根,③當△<0時,方程沒有實數(shù)根。
注意:應用的前提條件是:a≠0.
6、 一元二次方程根與系數(shù)的關(guān)系:x1 + x2= -b/a ,x1 _ x2 = c/a.
注意:應用的前提條件是:a≠0,△≥0.
7、 列方程解應用題:審題設元→列代數(shù)式、列方程→整理成一般形式→解方程→檢驗作答。
第二十三章 旋轉(zhuǎn)
1、 旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角。
2、 旋轉(zhuǎn)的性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等,②對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,③旋轉(zhuǎn)前、后的圖形全等。
關(guān)鍵:找好對應線段、對應角。
3、 中心對稱:把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么這兩個圖形關(guān)于這個點對稱或中心對稱。
4、 中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形,對應點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。②關(guān)于中心對稱的兩個圖形是全等形。
5、 中心對稱圖形:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形。
6、 對稱點的坐標規(guī)律:①關(guān)于x軸對稱:橫坐標不變,縱坐標互為相反數(shù),②關(guān)于y軸對稱:橫坐標互為相反數(shù),縱坐標不變,③關(guān)于原點對稱:橫坐標、縱坐標都互為相反數(shù)。
第二十四章 圓
1、 確定圓的條件:圓心→位置,半徑→大小。
2、 和圓有關(guān)的概念:弦---直徑,弧—半圓、優(yōu)弧、劣弧,圓心角,圓周角,弦心距。
3、 圓的對稱性:圓既是軸對稱圖形,又是中心對稱圖形。
4、 垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
5、 圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,弦的弦心距相等。
引申:在這四組量中,只要有一組量對應相等,其余各組量都相等。
6、 圓周角定理:①圓周角等于同弧所對的圓心角的一半,
②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;相等的圓周角所對的弧相等,
③半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
7、 內(nèi)心和外心:①內(nèi)心是三角形內(nèi)角平分線的交點,它到三角形三邊的距離相等。
②外心是三角形三邊垂直平分線的交點,它到三角形三個頂點的距離相等。
8、 直線和圓的位置關(guān)系:相交→d
9、 切線的判定:“有點連圓心”→證垂直?!盁o點做垂線”→證d=r。
切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑。
10、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
11、圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補,每一個外角等于它的內(nèi)對角。
12、圓外切四邊形的性質(zhì):圓外切四邊形的`對邊之和相等。
13、圓和圓的位置關(guān)系:外離→d>R+r.外切→d=R+r.相交→R-r
14、正多邊形和圓:半徑→外接圓的半徑,中心角→每一邊所對的圓心角,邊心距→中心到一邊的距離。
15、弧長和扇形面積:L=n∏R/180. S扇形=n∏R2/360.
16、圓錐的側(cè)面積和全面積:圓錐的母線長=扇形的半徑,圓錐底面圓周長=扇形弧長,圓錐的側(cè)面積=扇形面積,圓錐的全面積=扇形面積+底面圓面積。
第二十五章 概率初步
1、 三種事件:隨機事件、不可能事件、必然事件。
2、 概率:P(A)=p. 0≤P(A)≤1.
3、 古典概率的求法:①列舉法(把所有可能結(jié)果都表示出來),②列表法,③樹形圖。
4、 用頻率估計概率:根據(jù)一個隨機發(fā)生的事件發(fā)生的頻率所逐漸穩(wěn)定到的常數(shù),可以估計這個事件發(fā)生的概率。
第二十六章 二次函數(shù)
1、 定義:形如y=ax2+bx+c(a≠0,a、b、c是常數(shù))的函數(shù)叫二次函數(shù)。
2、 二次函數(shù)的分類:①y=ax2: 頂點坐標:原點; 對稱軸:y軸;
②y=ax2+c: 頂點坐標:(0、c); 對稱軸:y軸;
③y=a(x-h)2: 頂點坐標:(h、0); 對稱軸:直線x=h;
④y=a(x-h)2+k:頂點坐標:(h、k); 對稱軸:直線x=h;
⑤y=ax2+bx+c: 頂點坐標:(-b/ 2a , 4ac -b2/ 4a );對稱軸:直線x=-b/ 2a
3、a、b、c符號的判定:a:開口方向向上→a>0;開口方向向下→a<0。
b:與a左同右異,對稱軸在y軸左側(cè),a、b同號;對稱軸在y軸右側(cè),a、b異號。
C:交與y軸正半軸,c>0;交與y軸負半軸,c<0.
b2 -4ac :與x軸交點的個數(shù),△>0→兩個交點,△<0→無交點,△=0→一個交點。
3、 平移規(guī)律:“正左負右”“正上負下”。
前提:配方成y=a(x-h)2+k的形式。
4、 待定系數(shù)法確定函數(shù)關(guān)系式:①頂點在原點選y=ax2;
②頂點在y軸選y=ax2+c;
③通過坐標原點選y=ax2+bx;
④知道頂點在x軸上選y=a(x-h)2;
⑤知道頂點坐標選y=a(x-h)2+k;
⑥知道三點的坐標選y=ax2+bx+c。
5、 其他應用:求與x軸的交點→解一元二次方程;與y軸交點為(0、c)。
6、 對稱規(guī)律:①兩拋物線關(guān)于x軸對稱:a、b、c都變?yōu)槠湎喾磾?shù)。
②兩拋物線關(guān)于y軸對稱:a、c不變,b變?yōu)槠湎喾磾?shù)。
7、 實際問題:利潤=銷售額-總進價-其他費用,利潤=(售價-進價)_銷售量-其他費用。