高三人教版數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
對(duì)于很多高三學(xué)生來(lái)說(shuō),數(shù)學(xué)無(wú)疑也是一個(gè)難以攻克的難關(guān),數(shù)學(xué)總是雜而亂的,學(xué)習(xí)數(shù)學(xué)要講究方法才能在最終考試時(shí)看到成效。下面是小編給大家整理的高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
高三人教版數(shù)學(xué)知識(shí)點(diǎn)
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過(guò)定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.
高三人教版數(shù)學(xué)知識(shí)點(diǎn)
第一部分集合
(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n-1;非空真子集的數(shù)為2^n-2;
(2)注意:討論的時(shí)候不要遺忘了的情況。
(3)
第二部分函數(shù)與導(dǎo)數(shù)
1.映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。
2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;
⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法
3.復(fù)合函數(shù)的有關(guān)問(wèn)題
(1)復(fù)合函數(shù)定義域求法:
①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。
(2)復(fù)合函數(shù)單調(diào)性的判定:
①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。
4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。
5.函數(shù)的奇偶性
⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;
⑵是奇函數(shù);
⑶是偶函數(shù);
⑷奇函數(shù)在原點(diǎn)有定義,則;
⑸在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;
(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;
高三人教版數(shù)學(xué)知識(shí)點(diǎn)
1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
高三人教版數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納相關(guān)文章:
★ 人教版高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 人教版高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 人教版高三年級(jí)數(shù)學(xué)必考知識(shí)點(diǎn)
★ 人教版高三數(shù)學(xué)重要知識(shí)點(diǎn)
★ 人教版高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
★ 高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)小結(jié)
★ 高三數(shù)學(xué)專題復(fù)習(xí)知識(shí)點(diǎn)
★ 高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與答題套路