學(xué)習(xí)啦 > 知識大全 > 方法百科 > 方法大全 >

數(shù)學(xué)常用解題方法大全

時間: 澤凡0 分享

面對“眼花繚亂”的數(shù)學(xué)題型,自己掌握的解題方法總是顯得“捉襟見肘”,很多同學(xué)反饋表示,數(shù)學(xué)沒掌握解題方法,真的看不懂,大家是否有這種感受呢?不要擔(dān)心,不要怕!今天,小編為大家總結(jié)了數(shù)學(xué)常用解題方法大全,歡迎大家參考!

數(shù)學(xué)常用解題方法大全

篇1:數(shù)學(xué)解題方法

1、配方法

所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個或幾個多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法

因式分解,就是把一個多項(xiàng)式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

3、換元法

換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

4、判別式法與韋達(dá)定理

一元二次方程ax+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

6、構(gòu)造法

在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

篇2:數(shù)學(xué)解題方法

一、 數(shù)學(xué)解題方法

(1) 選擇題、填空題

選擇題、填空題通稱為小題,解答小題的原則為小題不大做,即用各種技巧解答問題,常用方法如下。

做小題有以下幾種基本方法:

1、 回憶法。直接從記憶中取要選擇的內(nèi)容。

2、 直接解答法。多用在數(shù)理科的試題中,根據(jù)已知條件,通過計(jì)算、作圖或代入選擇依次進(jìn)行驗(yàn)證等途徑,得出正確答案。

3、 淘汰法。把選項(xiàng)中錯誤中答案排除,余下的便是正確答案。

4、 猜測法。

5、 數(shù)形結(jié)合法

6、 特殊值法。

二、考場上解題策略

數(shù)學(xué)要想考好,必須要有扎實(shí)的基礎(chǔ)知識和一定量的習(xí)題練習(xí),在此基礎(chǔ)上輔以一些做題方法和考試技巧。高考考的是個人能力,要求考生不但會做題還要準(zhǔn)確快速地解答出來,只有這樣才能在規(guī)定的時間內(nèi)做完并能取得較高的分?jǐn)?shù)。因此,對于大部分高考生來說,在考試時應(yīng)處理好以下幾個關(guān)系。

1、快與準(zhǔn)的關(guān)系

在目前題量大、時間緊的情況下,準(zhǔn)字則尤為重要。只有準(zhǔn)才能得分,只有準(zhǔn)你才可不必考慮再花時間檢查,而快是平時訓(xùn)練的結(jié)果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。適當(dāng)?shù)芈稽c(diǎn)、準(zhǔn)一點(diǎn),可得多一點(diǎn)分;相反,快一點(diǎn),錯一片,花了時間還得不到分。

2、審題與解題的關(guān)系

有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細(xì)地審題,準(zhǔn)確地把握題目中的關(guān)鍵詞與量(如至少,0,自變量的取值范圍等等),從中獲取盡可能多的信息,才能迅速找準(zhǔn)解題方向。

3、會做與得分的關(guān)系

要將你的解題策略轉(zhuǎn)化為得分點(diǎn),主要靠準(zhǔn)確完整的數(shù)學(xué)語言表述,這一點(diǎn)往往被一些考生所忽視,因此卷面上大量出現(xiàn)會而不對對而不全的情況,考生自己的估分與實(shí)際得分差之甚遠(yuǎn)。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數(shù)論證中以圖代證,盡管解題思路正確甚至很巧妙,但是由于不善于把圖形語言準(zhǔn)確地轉(zhuǎn)譯為文字語言,得分少得可憐;對于許多看似簡單的題目,許多考生心中有數(shù)卻說不清楚,扣分者也不在少數(shù)。只有重視解題過程的語言表述,會做的題才能得分。

4、難題與容易題的關(guān)系

拿到試卷后,應(yīng)將全卷通覽一遍,一般來說應(yīng)按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是由易到難的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打持久戰(zhàn),那樣既耗費(fèi)時間又拿不到分,會做的題又被耽誤了。這幾年,數(shù)學(xué)試題已從一題把關(guān)轉(zhuǎn)為多題把關(guān),因此解答題都設(shè)置了層次分明的臺階,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有咬手的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細(xì)分析,定能得到應(yīng)有的分?jǐn)?shù)。

篇3:數(shù)學(xué)解題方法

為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。

一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。基于這樣的認(rèn)識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。

一、 熟悉化策略所謂熟悉化策略。

就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗(yàn)或解題模式,順利地解出原題。

一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。

常用的途徑有:

(一)充分聯(lián)想回憶基本知識和題型:

按照波利亞的觀點(diǎn),在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點(diǎn)和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。

(二)全方位、多角度分析題意:

對于同一道數(shù)學(xué)題,常??梢圆煌膫?cè)面、不同的角度去認(rèn)識。因此,根據(jù)自己的知識和經(jīng)驗(yàn),適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

(三)恰當(dāng)構(gòu)造輔助元素:

數(shù)學(xué)中,同一素材的題目,常??梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。

數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點(diǎn)、線、面、體),構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價(jià)性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。

二、簡單化策略

所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。

簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。

因此,在實(shí)際解題時,這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。

解題中,實(shí)施簡單化策略的'途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當(dāng)分解結(jié)論等。

1、尋求中間環(huán)節(jié),挖掘隱含條件:

在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。

因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實(shí)現(xiàn)復(fù)雜問題簡單化的一條重要途徑。

2、分類考察討論:

在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡單題,有助于實(shí)現(xiàn)復(fù)雜問題簡單化。

3、簡單化已知條件:

有些數(shù)學(xué)題,條件比較抽象、復(fù)雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至?xí)簳r撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。

4、恰當(dāng)分解結(jié)論:

有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時,不妨猜想一下,能否把結(jié)論分解為幾個比較簡單的部分,以便各個擊破,解出原題。

三、直觀化策略:

所謂直觀化策略,就是當(dāng)我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時,要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。

(一)圖表直觀:

有些數(shù)學(xué)題,內(nèi)容抽象,關(guān)系復(fù)雜,給理解題意增添了困難,常常會由于題目的抽象性和復(fù)雜性,使正常的思維難以進(jìn)行到底。

對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內(nèi)容形象化,復(fù)雜關(guān)系條理化,使思維有相對具體的依托,便于深入思考,發(fā)現(xiàn)解題線索。

(二)圖形直觀:

有些涉及數(shù)量關(guān)系的題目,用代數(shù)方法求解,道路崎嶇曲折,計(jì)算量偏大。這時,不妨借助圖形直觀,給題中有關(guān)數(shù)量以恰當(dāng)?shù)膸缀畏治?,拓寬解題思路,找出簡捷、合理的解題途徑。

(三)圖象直觀:

不少涉及數(shù)量關(guān)系的題目,與函數(shù)的圖象密切相關(guān),靈活運(yùn)用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。

四、特殊化策略

所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。

五、一般化策略

所謂一般化策略,就是當(dāng)我們面臨的是一個計(jì)算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時,要設(shè)法把特殊問題一般化,找出一個能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。

六、整體化策略

所謂整體化策略,就是當(dāng)我們面臨的是一道按常規(guī)思路進(jìn)行局部處理難以奏效或計(jì)算冗繁的題目時,要適時調(diào)整視角,把問題作為一個有機(jī)整體,從整體入手,對整體結(jié)構(gòu)進(jìn)行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。

七、間接化策略

所謂間接化策略,就是當(dāng)我們面臨的是一道從正面入手復(fù)雜繁難,或在特定場合甚至找不到解題依據(jù)的題目時,要隨時改變思維方向,從結(jié)論(或問題)的反面進(jìn)行思考,以便化難為易解出原題。

1822332