數(shù)學(xué)語(yǔ)言教學(xué)
摘要:數(shù)學(xué)語(yǔ)言具有科學(xué)性、簡(jiǎn)潔性、相通性,所以,數(shù)學(xué)語(yǔ)言是一種特殊的語(yǔ)言。對(duì)數(shù)學(xué)語(yǔ)言的研究必將對(duì)數(shù)學(xué)本身及數(shù)學(xué)教育的發(fā)展,乃至對(duì)人類文明都會(huì)起到積極的促進(jìn)作用。
關(guān)鍵詞:數(shù)學(xué)符號(hào) 數(shù)學(xué)語(yǔ)言 科學(xué) 簡(jiǎn)潔 相通
我們天天接觸數(shù)學(xué),但是很少有人對(duì)數(shù)學(xué)語(yǔ)言進(jìn)行專門(mén)系統(tǒng)的研究。譬如數(shù)學(xué)語(yǔ)言的產(chǎn)生、發(fā)展和形成;數(shù)學(xué)語(yǔ)言與一般語(yǔ)言有哪些不同,具有哪些特殊性;數(shù)學(xué)語(yǔ)言在促進(jìn)人類文明的過(guò)程中所起的作用;如何學(xué)好數(shù)學(xué)語(yǔ)言等等。從而使數(shù)學(xué)語(yǔ)言象漢語(yǔ)語(yǔ)言學(xué)那樣成為一門(mén)獨(dú)特的語(yǔ)言學(xué)科——數(shù)學(xué)語(yǔ)言學(xué)。本文只研究數(shù)學(xué)語(yǔ)言的特殊性。這種特殊性更多地是與一般語(yǔ)言(漢語(yǔ)語(yǔ)言)進(jìn)行比較而言的。下面只從數(shù)學(xué)符號(hào)的科學(xué)性、數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔性、數(shù)學(xué)語(yǔ)言的相通性三個(gè)方面進(jìn)行探討。
1、數(shù)學(xué)符號(hào)的科學(xué)性
數(shù)學(xué)符號(hào)是數(shù)學(xué)文字的主要形式,它是構(gòu)成數(shù)學(xué)語(yǔ)言的基本成份。
1,2,3,4,5,6,7,8,9,0,這十個(gè)符號(hào)是全世界普遍采用的,它們表示了全部的數(shù),書(shū)寫(xiě)、運(yùn)算都十分方便。這10個(gè)符號(hào)常被稱為阿拉伯?dāng)?shù)字,實(shí)際上卻是印度人創(chuàng)造的,只是經(jīng)過(guò)阿拉伯傳到歐洲。這是印度對(duì)人類文明的一項(xiàng)重大貢獻(xiàn),這一貢獻(xiàn)的意義也可能是今天的人們不易覺(jué)察的。但是,18世紀(jì)一位法國(guó)著名數(shù)學(xué)家曾說(shuō)過(guò):“用不多的記號(hào)表示全部的數(shù)的思想,賦予它的除了形式上的意義外,還有位置上的意義,它之如此絕妙非常,正是由于這種簡(jiǎn)易得難以估量。”
關(guān)于“位置上的意義”,指的是數(shù)字的進(jìn)位表達(dá)。比如說(shuō)724,它實(shí)際上是7×100+2×10+4,可是它只需簡(jiǎn)寫(xiě)成724就明白了。此外還有空位的問(wèn)題,假若有個(gè)數(shù)字是7×1000+2×100+4,那該怎么寫(xiě)呢?現(xiàn)在我們是很容易回答了,不就寫(xiě)為7204嗎?可是,在最初的數(shù)字符號(hào)系統(tǒng)中是沒(méi)有0這個(gè)符號(hào)的。有的用一個(gè)點(diǎn)來(lái)表示:72•4有的用一個(gè)方格來(lái)表示;有的干脆就拉開(kāi)一點(diǎn)寫(xiě),表示空一位;……但這些寫(xiě)法的不準(zhǔn)確、不方便是顯而易見(jiàn)的。直到使用了 0這個(gè)符號(hào),問(wèn)題才得以解決。而0這個(gè)符號(hào)比其他符號(hào)的出現(xiàn)晚了好幾百年。如果年看72004這個(gè)數(shù)字,我們能更清楚地體會(huì)到0這個(gè)符號(hào)的特殊意義。
數(shù)學(xué)的簡(jiǎn)潔不只表現(xiàn)在數(shù)字符號(hào)上,還表現(xiàn)在其他符號(hào)上,表現(xiàn)在命題的表述和論證上,表現(xiàn)在它的邏輯體系上,總之,表現(xiàn)在思維經(jīng)濟(jì)上。
數(shù)學(xué)符號(hào)有許多種,除了前面提到的數(shù)字符號(hào)外,還有代數(shù)的符號(hào),通常用英文字母或希臘字母表示。在笛卡兒時(shí)代,以英文字母的開(kāi)頭幾個(gè)表示已知數(shù),如a、b、c、…,以英文字母的最后幾個(gè)代表未知數(shù),如x、y、z,或以a、b、c、…代表常數(shù),以x、y、z代表變數(shù)。現(xiàn)在,這已不是固定的了,在某種約定之下,a、b、c、…也可代表未知數(shù),也可以表變數(shù),x、y、z也可以代表已知數(shù),也可以代表常數(shù)。還有一些特殊的常數(shù),如π,e。還有另一些表現(xiàn)數(shù)量的符號(hào),往往是其他類型符號(hào)的組合。
數(shù)字研究的對(duì)象已不只限于數(shù),還研究形,△表示三角形,□表示四邊形,⊙表示圓。
數(shù)學(xué)研究的最一般對(duì)象是集合,而表示集合的符號(hào)常常用英文字母的斜體,如A、B、C、D、X、Y、Z等。某些特殊的集合又用特殊的符號(hào)表示,例如,用N表示自然數(shù)集,而實(shí)數(shù)集則用R表示,N與nature(自然)一詞有關(guān),R與real(實(shí)的)有關(guān)。特定的集合組成空間,空間有時(shí)用S表示,S與space(空間)一詞有關(guān),但也用其他字母表示空間。這些符號(hào)的運(yùn)用使得數(shù)學(xué)語(yǔ)言變得簡(jiǎn)練。
還有一類符號(hào)是表示關(guān)系的,通過(guò)種種關(guān)系起聯(lián)結(jié)作用。常用的如等號(hào)=,近似等號(hào)≈,全等號(hào)≌或≡。還有不等號(hào)≠,<,>,<<?!伪硎酒叫嘘P(guān)系,⊥表示垂直關(guān)系, 與 表示元素與集合之間的關(guān)系, 表示集合與集合之間的關(guān)系, 表示蘊(yùn)涵關(guān)系等等。
還有一大類是關(guān)于運(yùn)算的符號(hào)。+,-,×,÷是四則運(yùn)算符號(hào)。 是開(kāi)方運(yùn)算符號(hào),sin, cos, tan是三角運(yùn)算符號(hào),lim是極限運(yùn)算符號(hào),d,是微積分運(yùn)算符號(hào)。 表示若干項(xiàng)乃至無(wú)窮項(xiàng)求和, 表示連乘(若干因子或無(wú)窮個(gè)因子),!表示階乘, , 是集合論中的運(yùn)算符號(hào)。映射是比運(yùn)算更普遍的概念,f,g,h等常被運(yùn)用作映射符號(hào)。
微積分是英國(guó)人牛頓和德國(guó)人萊布尼茨彼此獨(dú)立發(fā)現(xiàn)的,牛頓和萊布尼茨使用的微分符號(hào)卻是不同的。牛頓創(chuàng)立了微分符號(hào),比如說(shuō) 的微分用表示,可是牛頓的這一符號(hào)對(duì)于高階微分并不方便,并且不宜于表現(xiàn)微分與積分的關(guān)系,因而實(shí)質(zhì)上并不十分科學(xué)。相比之下,萊布尼茨的符號(hào)在這兩方面都比牛頓的符號(hào)更加科學(xué)合理,它反映了事物最內(nèi)在的本質(zhì),減輕了想象的任務(wù)。諸如這樣的優(yōu)美的式子,是在萊布尼茨符號(hào)下才能出現(xiàn)的。而英國(guó)人卻以牛頓為自豪,這是無(wú)可厚非的,但是,由于他們長(zhǎng)時(shí)間固守牛頓的符號(hào),使英國(guó)數(shù)學(xué)的發(fā)展受到了嚴(yán)重的損害。
所以,數(shù)學(xué)符號(hào)的科學(xué)性直接影響著數(shù)學(xué)語(yǔ)言的質(zhì)量,影響著數(shù)學(xué)及數(shù)學(xué)教育的發(fā)展。
2、數(shù)學(xué)語(yǔ)言的簡(jiǎn)潔性
數(shù)學(xué)語(yǔ)言非常簡(jiǎn)潔精確,它具有獨(dú)特的價(jià)值,它是科學(xué)語(yǔ)言的基礎(chǔ)。
從宏觀來(lái)說(shuō),人們常以“成千上萬(wàn)”來(lái)研究多,再多就是“百萬(wàn)”、“千萬(wàn)”了,更多則是“億萬(wàn)”??墒?,數(shù)學(xué)能作出更簡(jiǎn)潔也更明確、更有力的表示,比如說(shuō),1025、286243這樣巨大的數(shù)字,一般語(yǔ)言就說(shuō)不太清楚了。
從微觀來(lái)說(shuō),日常語(yǔ)言之中,“失之毫厘,廖以千里”,用一毫一厘來(lái)形容微小,還有形容體積之小的,時(shí)間之短的,距離之近的。但是,沒(méi)有比10-15,10-45這樣一些表達(dá)更能說(shuō)明問(wèn)題,它也更簡(jiǎn)潔、更明了。
[a, b]僅由a、b、[ ]這三個(gè)數(shù)學(xué)符號(hào)表出,但如果比用一般語(yǔ)言描述就成為“大于或等于a,小于或等于b的一切實(shí)數(shù)的集合。”除去標(biāo)點(diǎn)還得需要20個(gè)符號(hào),其中18個(gè)漢字。
若對(duì)任何 使得對(duì)任何n,m>N,有 ,則數(shù)列 有極限。這是著名的柯西判別準(zhǔn)則。如果要用一般語(yǔ)言是無(wú)論如何也表示不清的,
作為有理數(shù)、無(wú)理數(shù)、代數(shù)數(shù)、超越數(shù)、實(shí)數(shù)、虛數(shù)之間關(guān)系之一的式子 ,是各種數(shù)的大統(tǒng)一。用數(shù)學(xué)語(yǔ)言來(lái)表達(dá)是這樣的簡(jiǎn)潔、明晰。
數(shù)學(xué)語(yǔ)言有其獨(dú)特之處,有其獨(dú)特的價(jià)值,它不僅是普通語(yǔ)言無(wú)法替代的,而且它構(gòu)成了科學(xué)語(yǔ)言的基礎(chǔ)。越來(lái)越多的科學(xué)門(mén)類用數(shù)學(xué)語(yǔ)言表述自己,這不僅是因?yàn)閿?shù)學(xué)語(yǔ)言的簡(jiǎn)潔,而且是因?yàn)閿?shù)學(xué)語(yǔ)言的精確及其思想的普遍性與深刻性。
我們看看下面幾個(gè)式子,就能明白物理學(xué)是如何用數(shù)學(xué)語(yǔ)言來(lái)表述的。
F=0
F=
F=
第一、二兩個(gè)式子分別表達(dá)的是牛頓第一定律和第二定律,第三個(gè)式子說(shuō)的是萬(wàn)有引力定律。
慣性定律說(shuō)的是,在沒(méi)有外力的條件下,物體保持原有的運(yùn)動(dòng)(或靜止)狀態(tài),然而簡(jiǎn)潔的數(shù)學(xué)式F=0 (C是常數(shù))表達(dá)了定律的實(shí)質(zhì)。
第二定律說(shuō)的是,力與質(zhì)量和加速成正比,數(shù)學(xué)式子F= 表達(dá)了這一點(diǎn)。當(dāng)質(zhì)量是常數(shù)的時(shí)候,式子可寫(xiě)為F= ,又可用a表示加速度,因此牛頓第二定律又可以表示為人所共知的形式F=ma。
萬(wàn)有引力定律說(shuō)的是,任何兩個(gè)物體之間都有引力存在,其大小與兩物體質(zhì)量之積成正比,與距離的平方成反比,式子F= 又是多么有力地刻畫(huà)了這一思想。
3、數(shù)學(xué)語(yǔ)言的通用性
數(shù)學(xué)語(yǔ)言與一般語(yǔ)言相比,它具有無(wú)民族性、無(wú)區(qū)域性,它世界上唯一的通用語(yǔ)言。
數(shù)學(xué)語(yǔ)言是人類語(yǔ)言的組成部分,它與一般語(yǔ)言是相通的,而且可以說(shuō)是以一般語(yǔ)言為基礎(chǔ)的。一般語(yǔ)言掌握得如何,直接會(huì)影響數(shù)學(xué)語(yǔ)言的學(xué)習(xí)。但是,一般語(yǔ)言學(xué)得很好的人也不一定能掌握好數(shù)學(xué)語(yǔ)言,它們畢竟有差別。
一般語(yǔ)言具有民族性、地區(qū)性,一般語(yǔ)言與民族、地區(qū)文化有極密切的聯(lián)系。不同地區(qū)語(yǔ)言的差別可以很大,這種差別主要指符號(hào)及法則體系的不同。例如,英語(yǔ)與俄語(yǔ),不僅符號(hào)表示的差別很大,而且語(yǔ)言規(guī)則的差別也很大;至于漢語(yǔ),它與英語(yǔ)、俄語(yǔ)的差別更大,從書(shū)寫(xiě)來(lái)看,漢語(yǔ)是方塊字,從讀音來(lái)看,英語(yǔ)、俄語(yǔ)是拼讀法,語(yǔ)法的差別也特別大。
就是同一民族,書(shū)面語(yǔ)言完全相同而發(fā)音很不相同的情形更多,例如同講漢語(yǔ),北方與南方就有很大不同,北京話與廣大話很不相同。而且,目前世界上的語(yǔ)言就多達(dá)2500—3000種,其中僅美洲語(yǔ)言即有1000多種,非洲語(yǔ)言也近1000種。100萬(wàn)以上人口使用的文字則只有140種。這140 種之中,以漢語(yǔ)為母語(yǔ)的人最多,約占世界人口的20%;其次是英語(yǔ),約占6%;再次是俄語(yǔ)、西班牙語(yǔ)、法語(yǔ),使用這五種語(yǔ)言的人占世界人口的40%以上。
但數(shù)學(xué)語(yǔ)言沒(méi)有地區(qū)性、民族性。全世界因?yàn)榈貐^(qū)之不同、民族之不同而有二、三千種語(yǔ)言(遠(yuǎn)遠(yuǎn)超過(guò)全世界國(guó)家的數(shù)目),可是,全世界的數(shù)學(xué)語(yǔ)言只有一種。
這種語(yǔ)言符號(hào),全世界的中學(xué)生大學(xué)生們都認(rèn)識(shí),同一種書(shū)寫(xiě)、同一個(gè)含義,只是讀音一般有所不同而已。
從以上的探討中我們可以發(fā)現(xiàn),由于構(gòu)成數(shù)學(xué)語(yǔ)言的數(shù)學(xué)符號(hào)科學(xué)、簡(jiǎn)潔,而導(dǎo)致數(shù)學(xué)語(yǔ)言具有不同一般語(yǔ)言的特殊性,也就是具有科學(xué)性、簡(jiǎn)潔性、相通性。對(duì)數(shù)學(xué)語(yǔ)言的研究,不僅能促進(jìn)數(shù)學(xué)及數(shù)學(xué)教育的發(fā)展,而且也能對(duì)人類精神文明和物質(zhì)文明的進(jìn)步起到積極作用。
正因?yàn)閿?shù)學(xué)語(yǔ)言是一種特殊的語(yǔ)言,那它在數(shù)學(xué)教育中也具有重要的作用:
1、掌握數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)知識(shí)的基矗一方面,數(shù)學(xué)語(yǔ)言既是數(shù)學(xué)知識(shí)的重要組成部分,又是數(shù)學(xué)知識(shí)的載體。各種定義、定理、公式、法則和性質(zhì)等無(wú)不是通過(guò)數(shù)學(xué)語(yǔ)言來(lái)表述的。離開(kāi)了數(shù)學(xué)語(yǔ)言,數(shù)學(xué)知識(shí)就成了“水中月,鏡中花”。另一方面,數(shù)學(xué)知識(shí)是數(shù)學(xué)語(yǔ)言的內(nèi)涵,學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解、掌握,實(shí)質(zhì)是對(duì)數(shù)學(xué)語(yǔ)言的理解、掌握。一個(gè)對(duì)數(shù)學(xué)語(yǔ)言不能理解的人是絕對(duì)談不上對(duì)數(shù)學(xué)知識(shí)有什么理解的。因此,從一定意義上講。掌握數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)知識(shí)的基礎(chǔ),數(shù)學(xué)語(yǔ)言教學(xué)是數(shù)學(xué)教學(xué)的關(guān)鍵。
2、掌握數(shù)學(xué)語(yǔ)言,有助于發(fā)展邏輯思維能力。
邏輯思維是思維的高級(jí)形式。在各種能力中,邏輯思維能力處于核心地位。
因此,培養(yǎng)學(xué)生的邏輯思維能力是數(shù)學(xué)教學(xué)的中心任務(wù)。語(yǔ)言是思維的物質(zhì)外殼,什么樣的思維依賴于什么樣的語(yǔ)言。具體形象語(yǔ)言有助于具體形象思維的形成;嚴(yán)謹(jǐn)縝密、具有高度邏輯性的數(shù)學(xué)語(yǔ)言則是發(fā)展邏輯思維的“培養(yǎng)液”。
3、掌握數(shù)學(xué)語(yǔ)言是解決數(shù)學(xué)問(wèn)題的前提。
培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決數(shù)學(xué)問(wèn)題的能力,是數(shù)學(xué)教學(xué)的最終目的。“對(duì)一個(gè)問(wèn)題能清楚地說(shuō)一遍,等于解決了問(wèn)題的一半。”解決問(wèn)題的過(guò)程是一個(gè)嚴(yán)密的推理和論證的過(guò)程,正確地理解題意,畫(huà)出符合要求的圖形。尋找已知條件,分析條件與結(jié)論之間的關(guān)系,有關(guān)知識(shí)的映象,解題判斷的形成,直至解答過(guò)程的表述等,處處離不開(kāi)數(shù)學(xué)語(yǔ)言。
4、掌握數(shù)學(xué)語(yǔ)言,有利于思維品質(zhì)的形成。
數(shù)學(xué)語(yǔ)言的特點(diǎn)決定了數(shù)學(xué)語(yǔ)言對(duì)思維品質(zhì)的形成有重要作用。嚴(yán)謹(jǐn)、準(zhǔn)確是培養(yǎng)思維的邏輯性、周密性與批判性的“良方”;清晰、精練對(duì)培養(yǎng)思維的獨(dú)立性與深刻性有特效。
5、掌握數(shù)學(xué)語(yǔ)言,能激起學(xué)習(xí)數(shù)學(xué)的興趣。
數(shù)學(xué)的語(yǔ)言美具有自己的特點(diǎn),它是一種內(nèi)在的美,表面顯得枯燥乏味,其實(shí)卻蘊(yùn)藏著豐富的內(nèi)涵。充分理解、掌握它,就能領(lǐng)略其中的微妙之處,感受其中的美的意境,從而激起學(xué)習(xí)、探究的興趣。
數(shù)學(xué)語(yǔ)言作為一種表達(dá)科學(xué)思想的通用語(yǔ)言和數(shù)學(xué)思維的最佳載體,包含著多方面的內(nèi)容;其中較為突出的是敘述語(yǔ)言、符號(hào)語(yǔ)言及圖形語(yǔ)言,其特點(diǎn)是準(zhǔn)確、嚴(yán)密、簡(jiǎn)明。由于數(shù)學(xué)語(yǔ)言是一種高度抽象的人工符號(hào)系統(tǒng),因此,它常成為數(shù)學(xué)教學(xué)的難點(diǎn)。一些學(xué)生之所以害怕數(shù)學(xué),一方面在于數(shù)學(xué)語(yǔ)言難懂難學(xué),另一方面是教師對(duì)數(shù)學(xué)語(yǔ)言的教學(xué)不夠重視,缺少訓(xùn)練,以致不能準(zhǔn)確、熟練地駕馭數(shù)學(xué)語(yǔ)言。
接下來(lái)根據(jù)數(shù)學(xué)語(yǔ)言的特點(diǎn)及數(shù)學(xué)要求,談?wù)劷虒W(xué)中的實(shí)踐與認(rèn)識(shí)。
首先,注重普通語(yǔ)言與數(shù)學(xué)語(yǔ)言的互譯普通語(yǔ)言即日常生活中所用語(yǔ)言,這是學(xué)生熟悉的,用它來(lái)表達(dá)的事物,學(xué)生感到親切,也容易理解。其他任何一種語(yǔ)言的學(xué)習(xí),都必須以普通語(yǔ)言為解釋系統(tǒng)。數(shù)學(xué)語(yǔ)言也是如此,通過(guò)兩種語(yǔ)言的互譯,就可以使抽象的數(shù)學(xué)語(yǔ)言在現(xiàn)實(shí)生活中找到借鑒,從而能透徹理解,運(yùn)用自如。“互譯”含有兩方面的意思:一是將普通語(yǔ)言譯為數(shù)學(xué)符號(hào)語(yǔ)言,也就是通常所說(shuō)的“數(shù)學(xué)化”,例如方程是把文字表達(dá)的條件改用數(shù)學(xué)符號(hào),這是利用數(shù)學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題的必要程序。二是將數(shù)學(xué)語(yǔ)言譯為普通語(yǔ)言。數(shù)學(xué)實(shí)踐告訴我們,凡是學(xué)生能用普通語(yǔ)言復(fù)述概念的定義和解釋概念所揭示的本質(zhì)屬性,那么他們對(duì)概念的理解就深刻。由于數(shù)學(xué)語(yǔ)言是一種抽象的人工符號(hào)系統(tǒng),不適于口頭表達(dá),因此也只有翻譯成普通語(yǔ)言使之“通俗化”才便于交流。
其次,注重?cái)?shù)學(xué)語(yǔ)言學(xué)習(xí)的過(guò)程,合理安排教學(xué)
數(shù)學(xué)概念和數(shù)學(xué)符號(hào)的形成一般包括邏輯過(guò)程、心理過(guò)程和教學(xué)過(guò)程三個(gè)環(huán)節(jié)。邏輯過(guò)程能夠揭示概念之間的各種邏輯關(guān)系,便于對(duì)數(shù)學(xué)結(jié)構(gòu)從整體上理解,有助于學(xué)生對(duì)數(shù)學(xué)本質(zhì)的理解與認(rèn)識(shí)。心理過(guò)程是指學(xué)生從學(xué)習(xí)數(shù)學(xué)語(yǔ)言到掌握數(shù)學(xué)語(yǔ)言的過(guò)程,這種過(guò)程往往是因人而異。數(shù)學(xué)符號(hào)和規(guī)則從現(xiàn)實(shí)世界得到其意義,又在更大的范圍內(nèi)作用于現(xiàn)實(shí)。學(xué)生只有在理解數(shù)學(xué)語(yǔ)言的來(lái)龍去脈及意義,而且熟練地掌握他們的各種用法,從而得到理性的認(rèn)識(shí)之后,在數(shù)學(xué)學(xué)習(xí)中才能靈活地對(duì)它們進(jìn)行各種等價(jià)敘述,并在一個(gè)抽象的符號(hào)系統(tǒng)中正確應(yīng)用,從而達(dá)到對(duì)數(shù)學(xué)符號(hào)語(yǔ)言學(xué)習(xí)的最高水平。教學(xué)過(guò)程則是教師具體對(duì)某個(gè)數(shù)學(xué)符號(hào)進(jìn)行講解、分析、舉例、考查的過(guò)程,教師在教學(xué)中要善于駕馭數(shù)學(xué)語(yǔ)言。
1.善于推敲敘述語(yǔ)言的關(guān)鍵詞句。
敘述語(yǔ)言是介紹數(shù)學(xué)概念的最基本的表達(dá)形式,其中每一個(gè)關(guān)鍵的字和詞都有確切的意義,須仔細(xì)推敲,明確關(guān)鍵詞句之間的依存和制約關(guān)系。例如平行線的概念“在同一平面內(nèi)不相交的兩條直線叫做平行線”中的關(guān)鍵詞句有:“在同一平面內(nèi)”,“不相交”,“兩條直線”。教學(xué)時(shí)要著重說(shuō)明平行線是反映直線之間的相互位置關(guān)系的,不能孤立地說(shuō)某一條直線是平行線;要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)前提,可讓學(xué)生觀察不在同一平面內(nèi)的兩條直線也不相交;通過(guò)延長(zhǎng)直線使學(xué)生理解“不相交”的正確含義。這樣通過(guò)對(duì)關(guān)鍵詞句的推敲、變更、刪簡(jiǎn),使學(xué)生認(rèn)識(shí)到“在同一平面內(nèi)”、“不相交的兩條直線”這些關(guān)鍵詞句不可欠缺,從而加深對(duì)平行線的理解。
2.深入探究符號(hào)語(yǔ)言的數(shù)學(xué)意義。
符號(hào)語(yǔ)言是敘述語(yǔ)言的符號(hào)化,在引進(jìn)一個(gè)新的數(shù)學(xué)符號(hào)時(shí),首先要向?qū)W生介紹各種有代表性的具體模型,形成一定的感性認(rèn)識(shí);然后再根據(jù)定義,離開(kāi)具體的模型對(duì)符號(hào)的實(shí)質(zhì)進(jìn)行理性的分析,使學(xué)生在抽象的水平上真正掌握概念(內(nèi)涵和外延);最后又重新回到具體的模型,這里具體的模型在數(shù)學(xué)符號(hào)的教學(xué)中具有雙重意義:一是作為一般化的起點(diǎn),為引進(jìn)抽象符號(hào)作準(zhǔn)備,二是作為特殊化的途徑,便于符號(hào)的應(yīng)用。
數(shù)學(xué)符號(hào)語(yǔ)言,由于其高度的集約性、抽象性、內(nèi)涵的豐富性,往往難以讀懂。這就要求學(xué)生對(duì)符號(hào)語(yǔ)言具有相當(dāng)?shù)睦斫饽芰?,善于將?jiǎn)約的符號(hào)語(yǔ)言譯成一般的數(shù)學(xué)語(yǔ)言,從而有利于問(wèn)題的轉(zhuǎn)化與處理。
3.合理破譯圖形語(yǔ)言的數(shù)形關(guān)系。
圖形語(yǔ)言是一種視覺(jué)語(yǔ)言,通過(guò)圖形給出某些條件,其特點(diǎn)是直觀,便于觀察與聯(lián)想,觀察題設(shè)圖形的形狀、位置、范圍,聯(lián)想相關(guān)的數(shù)量或方程,這是“破譯”圖形語(yǔ)言的數(shù)形關(guān)系的基本思想。例如,長(zhǎng)方體的表面積教學(xué),學(xué)生初次接觸空間圖形的平面直觀圖———這種特殊的圖形語(yǔ)言,學(xué)生難于理解,教學(xué)時(shí)可采用以下步驟進(jìn)行操作:①?gòu)哪P偷綀D形,即根據(jù)具體的模型畫(huà)出直觀圖;②從圖形到模型,即根據(jù)所畫(huà)的直觀圖,用具體的模型表現(xiàn)出來(lái),這樣的設(shè)計(jì)重在建立圖形與模型之間的視覺(jué)聯(lián)系,為學(xué)生提供充分的感性認(rèn)識(shí),并使它們熟悉直觀圖的畫(huà)法結(jié)構(gòu)和特點(diǎn);③從圖形到符號(hào),即把已有的直觀圖中的各種位置關(guān)系用符號(hào)表示;④從符號(hào)到圖形,即根據(jù)符號(hào)所表示的條件,準(zhǔn)確地畫(huà)出相應(yīng)的直觀圖。這兩步設(shè)計(jì)是為了建立圖像語(yǔ)言與符號(hào)語(yǔ)言之間的對(duì)應(yīng)關(guān)系,利用圖形語(yǔ)言來(lái)輔助思維,利用符號(hào)語(yǔ)言來(lái)表達(dá)思維。
總之,在數(shù)學(xué)教學(xué)中,教師應(yīng)指導(dǎo)學(xué)生嚴(yán)謹(jǐn)準(zhǔn)確地使用數(shù)學(xué)語(yǔ)言,善于發(fā)現(xiàn)并靈活掌握各種數(shù)學(xué)語(yǔ)言所描述的條件及其相互轉(zhuǎn)化,以加深對(duì)數(shù)學(xué)概念的理解和應(yīng)用。
參考書(shū)目:
1.張楚廷 數(shù)學(xué)文化[M],高等教育出版社.2000年;
2.鄧東皋.數(shù)學(xué)與文化[M],北京大學(xué)出版社.1990年;
3.王慶人.數(shù)學(xué)家談數(shù)學(xué)本質(zhì)[M],北京大學(xué)出版社.1989年;
4.歐陽(yáng)維誠(chéng).文學(xué)中的數(shù)學(xué)[M],湖南人民出版社.1998年。