學(xué)習(xí)啦 > 論文大全 > 畢業(yè)論文 > 醫(yī)藥學(xué)論文 > 藥學(xué) >

阿司匹林胃漂浮微球的制備

時(shí)間: 李曉芳 洪慧 何琳1 分享
【關(guān)鍵詞】 胃漂浮微球
摘要:目的 制備阿司匹林胃內(nèi)滯留漂浮微球。方法 以乙基纖維素為載體材料,采用乳化―溶劑擴(kuò)散技術(shù)制備阿司匹林微球,通過正交試驗(yàn)優(yōu)選制備工藝,并對微球的體外漂浮性能,包封率,載藥量,釋放度等理化性能進(jìn)行考察。結(jié)果 該法所制微球形態(tài)圓整,大小較均勻,粒徑范圍45~200 μm,載藥量為32%,包封率為20.5%,體外12 h漂浮率為37.6%。結(jié)論 本微球制備工藝較簡單,重現(xiàn)性好。體外呈現(xiàn)較好的漂浮性能與緩釋特性。
  關(guān)鍵詞:阿司匹林; 胃漂浮微球; 乳化―溶劑擴(kuò)散法; 乙基纖維素
  Abstract: Objective To develop a floating oral delivery system of aspirin in hollow microspheres.Methods The aspirin microspheres were prepared by emulsionsolvent diffusion technique using ethyl cellulose as carrier polymer. The technology was optimized by orthogonal test. The physicochemical properties of microspheres such as buoyancy,drug loading,encapsulation efficiency and in vitro drug release were investigated. Results The prepared microspheres were spherical with a size distribution range between 45 and 200 μm. The drug loading capacity and encapsulation efficiency was found to be 32% and 20.5%,respectively. The floating rate after 12 hours was 37.6%. Conclusion He preparation technique of floating aspirin microspheres is simple and reproducible. The enhanced buoyancy and sustained in vitro release properties of the microspheres make them a potential candidate for floating drug dosage systems.
  Key words:aspirin; floating oral microspheres; emulsionsolvent diffusion; ethyl cellulose
阿司匹林是具有百年歷史的傳統(tǒng)藥物,近年來在臨床研究中不斷發(fā)現(xiàn)其新用途,小劑量(75~160 mg/d)的阿司匹林具有較好的抗血栓作用,臨床表現(xiàn)為防治心肌梗死和缺血性腦血管疾病[1]。阿司匹林為弱酸性藥物,在胃及小腸上段易吸收,但對胃腸道黏膜刺激性較大,長期服用易誘發(fā)胃腸道潰瘍。本實(shí)驗(yàn)以阿司匹林為模型藥物研制多單元型胃內(nèi)滯留漂浮型給藥系統(tǒng)(HBS),采用乳化-溶劑擴(kuò)散法制得阿司匹林乙基纖維素胃漂浮型微球。藥物分散于微球內(nèi),可避免HBS漂浮制劑在胃排空中的“全或無”效應(yīng)和胃腸道轉(zhuǎn)運(yùn)個(gè)體差異的缺點(diǎn)[23],減少對胃黏膜的刺激性,延長藥物在胃內(nèi)的滯留時(shí)間,達(dá)到減少給藥次數(shù),提高病人順應(yīng)性與療效,降低毒副作用的目的。
  1 儀器與試藥
  JJ―1型定時(shí)電動攪拌機(jī)(江蘇省金壇正基儀器有限公司);UV―7501 紫外分光光度計(jì)(無錫科達(dá)儀器廠);ZPD6―B型溶出儀(上海黃海藥檢儀器廠)。阿司匹林對照品(中國藥品生物制品檢定所);乙基纖維素(廣東達(dá)濠精細(xì)化學(xué)品公司);聚乙烯醇(PVA―124,廣東汕頭市西隴化工廠);其余試劑均為分析純。
  2 實(shí)驗(yàn)方法與結(jié)果
  2.1 阿司匹林微球的制備[4]
  稱取乙基纖維素適量溶解在10 mL二氯甲烷乙醇(體積比1∶1)的混合溶劑中,將阿司匹林溶解在其中制得有機(jī)相。另取一定量的聚乙烯醇(polyvinyl alcohol,PVA)溶于50 mL的水中,將有機(jī)相加入水相,在一定速度下攪拌1 h。制得的微球抽濾,水洗,40 ℃干燥即得。
  2.2 正交試驗(yàn)設(shè)計(jì)優(yōu)化制備工藝
  根據(jù)預(yù)試驗(yàn)結(jié)果,對轉(zhuǎn)速、投料比、乙基纖維素的濃度、PVA濃度4個(gè)因素進(jìn)行考察。以微球的得率、漂浮率、包封率的綜合值為考察指標(biāo),采用L9(34)正交表設(shè)計(jì)正交試驗(yàn)優(yōu)化制備工藝,見表1。試驗(yàn)結(jié)果見表2,方差分析見表3。由正交試驗(yàn)與方差分析結(jié)果可知,4個(gè)因素對微球的形成及理化性質(zhì)影響順序?yàn)锳>C>D>B,其中因素A,C的影響較為顯著。最佳工藝為A3B1C2D2,即轉(zhuǎn)速為900 r/min,EC質(zhì)量濃度為3%(ρ),EC與藥物質(zhì)量比為1∶2,PVA質(zhì)量濃度為0.75%(ρ)。表1 L9(34)試驗(yàn)因素水平表(略)表2 正交試驗(yàn)結(jié)果分析(略)
  2.3 微球的得率測定
  干燥后的阿司匹林微球過24目篩后稱重,與藥物和載體的投料總量相比,計(jì)算微球的得率。
  2.4 微球的漂浮率測定
稱100 mg微球,分散于300 mL,0.1 mol/L的鹽酸溶液表面,室溫放置4 h后,收集漂浮在液面上的微球,干燥,稱重,計(jì)算漂浮率。表3 方差分析表(略)
  2.5 微球載藥量與包封率測定
  2.5.1 測定波長的選擇
  稱取阿司匹林對照品適量,加乙醇溶解,使成1 mg/mL,再用0.1 mol/L 氫氧化鈉溶液制成20 μg/mL溶液。照分光光度法在200~400 nm波長范圍內(nèi)掃描[5]。結(jié)果顯示本品在296 nm處有最大吸收,選擇296 nm為測定波長。按制備處方比例同法配制乙基纖維素溶液并掃描,結(jié)果表明在296 nm處幾無吸收,載體材料不干擾阿司匹林含量測定。
  2.5.2 方法穩(wěn)定性考察
  將阿司匹林貯備液用0.1 mol/L NaOH稀釋成20 μg/mL溶液,放置15 min后分別于0、2、4、6、8 h測定吸收度,結(jié)果吸收度在8 h基本無變化,顯示供試品在8 h內(nèi)穩(wěn)定。
  2.5.3 線性關(guān)系考察
  精密取阿司匹林對照品10.0 mg,加乙醇溶解,制成1 mg/mL。精密吸取上述溶液0.25、0.5、0.75、1.0、1.25、1.5 mL,分別置于25 mL容量瓶,用0.1 mol/L NaOH溶液稀釋至刻度,以0.1 mol/L NaOH為空白,在296 nm波長處測定吸收度,經(jīng)線性回歸,得回歸方程:A= 0.01872ρ+0.00573,r=09997。結(jié)果表明阿司匹林在10~60 μg/mL 濃度范圍內(nèi),吸收度與濃度呈良好的線性關(guān)系。
  2.5.4 回收率試驗(yàn)
  精密稱取阿司匹林對照品10、15、20 mg,分別置于10 mL容量瓶中,按處方比例加入乙基纖維素和PVA適量 ,加乙醇溶解并稀釋至刻度。精密吸取0.5 mL 至25 mL容量瓶中,用0.1 mol/L NaOH溶液稀釋至刻度,放置15 min,微孔濾膜過濾,在296 nm處測定吸收度,計(jì)算回收率,結(jié)果平均回收率為101.4%。
  2.5.5 微球載藥量與包封率的測定
  精密稱取阿司匹林對照品15 mg至10 mL的容量瓶中,加乙醇溶解并稀釋至刻度。精密吸取0.5 mL 至25 mL容量瓶中,加0.1 mol/L NaOH稀釋至刻度,放置15 min,在296 nm處測吸收度。精密稱取自制阿司匹林微球約50 mg至10 mL容量瓶中,用乙醇稀釋至刻度制成質(zhì)量濃度為5 mg/mL的溶液。取0.5 mL至25 mL容量瓶中,加0.1 mol/L NaOH稀釋至刻度,放置15 min,微孔濾膜過濾,在296 nm處測吸收度。按下式計(jì)算阿司匹林在微球中的含量及包封率。
  2.6 阿司匹林胃漂浮微球的理化性能考察
  按正交試驗(yàn)篩選的較佳工藝制備3批阿司匹林胃漂浮微球,樣品平均得率為42% ,平均載藥量為32%,包封率為20.5%。
  2.6.1 微球形態(tài)及粒徑分布
  在光學(xué)顯微鏡下觀察微球形態(tài),呈光滑球狀物,外觀圓整,大小較均勻,無黏連現(xiàn)象。顯微鏡法測定200個(gè)微球直徑,結(jié)果表明微球粒徑大部分分布在45~200 μm范圍內(nèi),平均粒徑為70 μm。見圖1。
  2.6.2 微球的漂浮性能考察[6]
  稱取微球適量,分散于0.1 mol/L的鹽酸溶液表面(37±1 ℃,250 mL),以100 r/min攪拌12 h后,收集漂浮在液面上的微球,干燥后稱重,計(jì)算漂浮率。結(jié)果微球體外12 h漂浮率為37.6%?! ?.6.3 微球體外釋藥試驗(yàn)
  按《中國藥典》2000版溶出度測定小杯法[7]進(jìn)行阿司匹林胃漂浮微球釋放度測定,以0.1 mol/L鹽酸溶液(37±1 ℃,250 mL)為釋放介質(zhì),稱取微球適量(相當(dāng)于阿司匹林40 mg)撒布于溶出杯內(nèi),以100 r/min攪拌,分別在1、2、4、6、8、10、12 h取樣5 mL(同時(shí)向溶出杯中補(bǔ)加同溫度0.1 mol/L鹽酸5 mL),微孔濾膜濾過,精密吸取濾液2 mL,加0.1 mol/L NaOH溶液稀釋至10 mL,在296 nm處測吸收度,計(jì)算累積釋放百分率,結(jié)果見圖2。
  3 討 論
  3.1 阿司匹林胃漂浮微球形成機(jī)理及影響因素
  試驗(yàn)采用乳化―溶劑擴(kuò)散技術(shù)制備阿司匹林中空微球,將藥物與載體材料(EC)溶于乙醇-二氯甲烷形成有機(jī)相,攪拌下加至水相中,乳化分散形成O/W乳滴;由于乙醇迅速擴(kuò)散進(jìn)入水相,導(dǎo)致EC溶解度降低而與藥物共同析出形成微球,形成的固化膜殼包裹二氯甲烷形成氣腔。攪拌過程中二氯甲烷不斷揮發(fā),微球內(nèi)部壓力降低,水分進(jìn)入充滿空腔。微球干燥后水分蒸發(fā),最終形成中空微球,而能在液面漂?。?]。PVA作為乳化劑,吸附于乳滴表面形成乳化膜,阻止乳滴的合并,增加體系穩(wěn)定性。二氯甲烷揮發(fā)的速度將直接影響微球的形態(tài)及理化性能。揮發(fā)太慢,微球易形成表面多孔結(jié)構(gòu),難以形成固化膜殼;揮發(fā)速度過快,微球表面呈現(xiàn)大塊凹陷,難以形成中空結(jié)構(gòu),均影響其漂浮性能[8]。試驗(yàn)表明攪拌速度、藥物與載體投料比、穩(wěn)定劑等均能影響微球的成型與質(zhì)量。攪拌速度慢,乳滴分散度小,微球粒徑較大,易發(fā)生碰撞、黏連;攪拌速度過快,將影響二氯甲烷揮發(fā)的速度而影響微球質(zhì)量。藥物投入比例高,形成的微球載藥量增加,但微球表面粗糙,藥物多在微球表面沉淀結(jié)晶,不易形成均勻膜殼,微球易被介質(zhì)滲透,漂浮性差。
  3.2 藥物的性質(zhì)與微球包封性能
  采用乳化―溶劑擴(kuò)散技術(shù)制備微球,藥物的溶解度以及在有機(jī)相和水之間的分配系數(shù)將影響微球的載藥量和包封率[8]。阿司匹林在水中溶解度為3 mg/mL,在二氯甲烷和水之間的分配系數(shù)較小,制備微球的過程中多數(shù)的藥物將逐漸擴(kuò)散進(jìn)入水相而使制得的微球包封率較低。選用脂溶性大的藥物制備微球?qū)@得較高的載藥量和包封率。
  3.2 阿司匹林的含量測定
  試驗(yàn)建立紫外分光光度法測定微球中阿司匹林的含量。本法通過堿水解后測定水楊酸,求算阿司匹林的含量,方法簡便且排除原料中水楊酸的干擾。
  3.3 阿司匹林微球體外釋藥行為
  微球在0.1 mol/L鹽酸介質(zhì)中的釋藥試驗(yàn)表明,乙基纖維素作為載體材料,呈現(xiàn)較好的緩釋效果。可能由于藥物較多沉積于微球表面,所以初始釋放度較高。經(jīng)過8 h后,藥物釋放度增加緩慢。這可能由于阿司匹林為一弱酸性藥物,在0.1 mol/L的鹽酸介質(zhì)中離子化程度低,溶解度小而導(dǎo)致釋藥不完全。
  4 結(jié) 語
  以乙基纖維素為載體材料,采用乳化―溶劑擴(kuò)散法制得阿司匹林胃漂浮型微球,制備工藝較簡單,重現(xiàn)性好。微球形態(tài)圓整,大小較均勻,在0.1 mol/L的鹽酸介質(zhì)呈現(xiàn)較好的漂浮性能與緩釋特性。
  參考文獻(xiàn):
[1]田路一.阿司匹林的現(xiàn)代藥理與臨床 [J]. 天津藥學(xué) ,2001,13(增刊):13.
[2]KAMEL AHEl,SOKAR M S,GAMAL SSAl,et al. Preparation and evaluation of Ketoprofer floating oral delivery systems[J]. International Journal of Pharmaceutics,2001,220:13.
  [3]JOSEPH N J,LAKSHMI S,JAYAKRISHNAN A. A floatingtype oral dosage form for piroxicam based on hollow polycarbonates microspheres: in vitro and in vivo evaluation in rabbits[J]. Journal of Controlled Release,2002,79:71.
  [4]KAWASHIM Y,NIWA T,TAKWUCHI H,et al. Hollow microspheres for Use as a Floating Controlled Drug Delivery System in the Stomach[J]. J Pharm Sci,1992,81:135.
 ?。?]邵珠民,呂冬梅.紫外分光光度法測定阿司匹林搽劑的含量[J]. 中國藥師,2003,6(2):92.
 ?。?]KAWASHIM Y,NIWA T,TAKWUCHI H,et al,Preparation of multiple unit hollow microspheres with acrylic resin containing tranilast and their drug release characteristics (in vitro) and floating behavior (in vivo) [J]. J Controlled Release,1991,16:279.
 ?。?]國家藥典委員會.中華人民共和國藥典:二部[S].北京:化學(xué)工業(yè)出版社,2000:附錄75.
 ?。?]YASUNORI S,YOSHIAKI K,HIROFUMI T,et al. Physicochemical properties to determine the buoyancy of hollow microspheres prepared by the emulsion solvent diffusion method[J]. Eur J Pharm Biopharm,2003,55:297.
38747