數(shù)據(jù)挖掘技術(shù)論文(2)
數(shù)據(jù)挖掘技術(shù)論文篇二
數(shù)據(jù)挖掘技術(shù)研究
[摘要] 本文主要介紹了數(shù)據(jù)挖掘的基本概念,以及數(shù)據(jù)挖掘的方法。
[關(guān)鍵詞] 數(shù)據(jù)挖掘 數(shù)據(jù)挖掘方法
隨著信息技術(shù)迅速發(fā)展,數(shù)據(jù)庫(kù)的規(guī)模不斷擴(kuò)大,產(chǎn)生了大量的數(shù)據(jù)。但大量的數(shù)據(jù)往往無(wú)法辨別隱藏在其中的能對(duì)決策提供支持的信息,而傳統(tǒng)的查詢、報(bào)表工具無(wú)法滿足挖掘這些信息的需求。因此,需要一種新的數(shù)據(jù)分析技術(shù)處理大量數(shù)據(jù),并從中抽取有價(jià)值的潛在知識(shí),數(shù)據(jù)挖掘(Data Mining)技術(shù)由此應(yīng)運(yùn)而生。
一、數(shù)據(jù)挖掘的定義
數(shù)據(jù)挖掘是指從數(shù)據(jù)集合中自動(dòng)抽取隱藏在數(shù)據(jù)中的那些有用信息的非平凡過(guò)程,這些信息的表現(xiàn)形式為:規(guī)則、概念、規(guī)律及模式等。它可幫助決策者分析歷史數(shù)據(jù)及當(dāng)前數(shù)據(jù),并從中發(fā)現(xiàn)隱藏的關(guān)系和模式,進(jìn)而預(yù)測(cè)未來(lái)可能發(fā)生的行為。數(shù)據(jù)挖掘的過(guò)程也叫知識(shí)發(fā)現(xiàn)的過(guò)程。
二、數(shù)據(jù)挖掘的方法
1.統(tǒng)計(jì)方法。傳統(tǒng)的統(tǒng)計(jì)學(xué)為數(shù)據(jù)挖掘提供了許多判別和回歸分析方法,常用的有貝葉斯推理、回歸分析、方差分析等技術(shù)。貝葉斯推理是在知道新的信息后修正數(shù)據(jù)集概率分布的基本工具,處理數(shù)據(jù)挖掘中的分類問(wèn)題,回歸分析用來(lái)找到一個(gè)輸入變量和輸出變量關(guān)系的最佳模型,在回歸分析中有用來(lái)描述一個(gè)變量的變化趨勢(shì)和別的變量值的關(guān)系的線性回歸,還有用來(lái)為某些事件發(fā)生的概率建模為預(yù)測(cè)變量集的對(duì)數(shù)回歸、統(tǒng)計(jì)方法中的方差分析一般用于分析估計(jì)回歸直線的性能和自變量對(duì)最終回歸的影響,是許多挖掘應(yīng)用中有力的工具之一。
2.關(guān)聯(lián)規(guī)則。關(guān)聯(lián)規(guī)則是一種簡(jiǎn)單,實(shí)用的分析規(guī)則,它描述了一個(gè)事物中某些屬性同時(shí)出現(xiàn)的規(guī)律和模式,是數(shù)據(jù)挖掘中最成熟的主要技術(shù)之一。關(guān)聯(lián)規(guī)則在數(shù)據(jù)挖掘領(lǐng)域應(yīng)用很廣泛適合于在大型數(shù)據(jù)集中發(fā)現(xiàn)數(shù)據(jù)之間的有意義關(guān)系,原因之一是它不受只選擇一個(gè)因變量的限制。大多數(shù)關(guān)聯(lián)規(guī)則挖掘算法能夠無(wú)遺漏發(fā)現(xiàn)隱藏在所挖掘數(shù)據(jù)中的所有關(guān)聯(lián)關(guān)系,但是,并不是所有通過(guò)關(guān)聯(lián)得到的屬性之間的關(guān)系都有實(shí)際應(yīng)用價(jià)值,要對(duì)這些規(guī)則要進(jìn)行有效的評(píng)價(jià),篩選有意義的關(guān)聯(lián)規(guī)則。
3.聚類分析。聚類分析是根據(jù)所選樣本間關(guān)聯(lián)的標(biāo)準(zhǔn)將其劃分成幾個(gè)組,同組內(nèi)的樣本具有較高的相似度,不同組的則相異,常用的技術(shù)有分裂算法,凝聚算法,劃分聚類和增量聚類。聚類方法適合于探討樣本間的內(nèi)部關(guān)系,從而對(duì)樣本結(jié)構(gòu)做出合理的評(píng)價(jià),此外,聚類分析還用于對(duì)孤立點(diǎn)的檢測(cè)。并非由聚類分析算法得到的類對(duì)決策都有效,在運(yùn)用某一個(gè)算法之前,一般要先對(duì)數(shù)據(jù)的聚類趨勢(shì)進(jìn)行檢驗(yàn)。
4.決策樹(shù)方法。決策樹(shù)學(xué)習(xí)是一種通過(guò)逼近離散值目標(biāo)函數(shù)的方法,通過(guò)把實(shí)例從根結(jié)點(diǎn)排列到某個(gè)葉子結(jié)點(diǎn)來(lái)分類實(shí)例,葉子結(jié)點(diǎn)即為實(shí)例所屬的分類。樹(shù)上的每個(gè)結(jié)點(diǎn)說(shuō)明了對(duì)實(shí)例的某個(gè)屬性的測(cè)試,該結(jié)點(diǎn)的每一個(gè)后繼分支對(duì)應(yīng)于該屬性的一個(gè)可能值,分類實(shí)例的方法是從這棵樹(shù)的根結(jié)點(diǎn)開(kāi)始,測(cè)試這個(gè)結(jié)點(diǎn)指定的屬性,然后按照給定實(shí)例的該屬性值對(duì)應(yīng)的樹(shù)枝向下移動(dòng)。決策樹(shù)方法是要應(yīng)用于數(shù)據(jù)挖掘的分類方面。
5.神經(jīng)網(wǎng)絡(luò)。神經(jīng)網(wǎng)絡(luò)建立在自學(xué)習(xí)的數(shù)學(xué)模型基礎(chǔ)之上,能夠?qū)Υ罅繌?fù)雜的數(shù)據(jù)進(jìn)行分析,并可以完成對(duì)人腦或其他計(jì)算機(jī)來(lái)說(shuō)極為復(fù)雜的模式抽取及趨勢(shì)分析,神經(jīng)網(wǎng)絡(luò)既可以表現(xiàn)為有指導(dǎo)的學(xué)習(xí)也可以是無(wú)指導(dǎo)聚類,無(wú)論哪種,輸入到神經(jīng)網(wǎng)絡(luò)中的值都是數(shù)值型的。人工神經(jīng)元網(wǎng)絡(luò)模擬人腦神經(jīng)元結(jié)構(gòu),建立三大類多種神經(jīng)元網(wǎng)絡(luò),具有非線形映射特性、信息的分布存儲(chǔ)、并行處理和全局集體的作用、高度的自學(xué)習(xí)、自組織和自適應(yīng)能力的種種優(yōu)點(diǎn)。
6.遺傳算法。遺傳算法是一種受生物進(jìn)化啟發(fā)的學(xué)習(xí)方法,通過(guò)變異和重組當(dāng)前己知的最好假設(shè)來(lái)生成后續(xù)的假設(shè)。每一步,通過(guò)使用目前適應(yīng)性最高的假設(shè)的后代替代群體的某個(gè)部分,來(lái)更新當(dāng)前群體的一組假設(shè),來(lái)實(shí)現(xiàn)各個(gè)個(gè)體的適應(yīng)性的提高。遺傳算法由三個(gè)基本過(guò)程組成:繁殖(選擇)是從一個(gè)舊種群(父代)選出生命力強(qiáng)的個(gè)體,產(chǎn)生新種群(后代)的過(guò)程;交叉〔重組)選擇兩個(gè)不同個(gè)體〔染色體)的部分(基因)進(jìn)行交換,形成新個(gè)體的過(guò)程;變異(突變)是對(duì)某些個(gè)體的某些基因進(jìn)行變異的過(guò)程。在數(shù)據(jù)挖掘中,可以被用作評(píng)估其他算法的適合度。
7.粗糙集。粗糙集能夠在缺少關(guān)于數(shù)據(jù)先驗(yàn)知識(shí)的情況下,只以考察數(shù)據(jù)的分類能力為基礎(chǔ),解決模糊或不確定數(shù)據(jù)的分析和處理問(wèn)題。粗糙集用于從數(shù)據(jù)庫(kù)中發(fā)現(xiàn)分類規(guī)則的基本思想是將數(shù)據(jù)庫(kù)中的屬性分為條件屬性和結(jié)論屬性,對(duì)數(shù)據(jù)庫(kù)中的元組根據(jù)各個(gè)屬性不同的屬性值分成相應(yīng)的子集,然后對(duì)條件屬性劃分的子集與結(jié)論屬性劃分的子集之間上下近似關(guān)系生成判定規(guī)則。所有相似對(duì)象的集合稱為初等集合,形成知識(shí)的基本成分。任何初等集合的并集稱為精確集,否則,一個(gè)集合就是粗糙的(不精確的)。每個(gè)粗糙集都具有邊界元素,也就是那些既不能確定為集合元素,也不能確定為集合補(bǔ)集元素的元素。粗糙集理論可以應(yīng)用于數(shù)據(jù)挖掘中的分類、發(fā)現(xiàn)不準(zhǔn)確數(shù)據(jù)或噪聲數(shù)據(jù)內(nèi)在的結(jié)構(gòu)聯(lián)系。
8.支持向量機(jī)。支持向量機(jī)(SVM)是在統(tǒng)計(jì)學(xué)習(xí)理論的基礎(chǔ)上發(fā)展出來(lái)的一種新的機(jī)器學(xué)習(xí)方法。它基于結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則上的,盡量提高學(xué)習(xí)機(jī)的泛化能力,具有良好的推廣性能和較好的分類精確性,能有效的解決過(guò)學(xué)習(xí)問(wèn)題,現(xiàn)已成為訓(xùn)練多層感知器、RBF神經(jīng)網(wǎng)絡(luò)和多項(xiàng)式神經(jīng)元網(wǎng)絡(luò)的替代性方法。另外,支持向量機(jī)算法是一個(gè)凸優(yōu)化問(wèn)題,局部最優(yōu)解一定是全局最優(yōu)解,這些特點(diǎn)都是包括神經(jīng)元網(wǎng)絡(luò)在內(nèi)的其他算法所不能及的。支持向量機(jī)可以應(yīng)用于數(shù)據(jù)挖掘的分類、回歸、對(duì)未知事物的探索等方面。
事實(shí)上,任何一種挖掘工具往往是根據(jù)具體問(wèn)題來(lái)選擇合適挖掘方法,很難說(shuō)哪種方法好,那種方法劣,而是視具體問(wèn)題而定。
三、結(jié)束語(yǔ)
目前,數(shù)據(jù)挖掘技術(shù)雖然得到了一定程度的應(yīng)用,并取得了顯著成效,但仍存在著許多尚未解決的問(wèn)題。隨著人們對(duì)數(shù)據(jù)挖掘技術(shù)的深人研究,數(shù)據(jù)挖掘技術(shù)必將在更加廣泛的領(lǐng)域得到應(yīng)用,并取得更加顯著的效果。
參考文獻(xiàn):
蘇新寧楊建林鄧三鴻等:數(shù)據(jù)挖掘理論與技術(shù)[M].北京:科學(xué)技術(shù)文獻(xiàn)出版社,2003
看了“數(shù)據(jù)挖掘技術(shù)論文”的人還看:
1.淺談?dòng)?jì)算機(jī)數(shù)據(jù)挖掘論文
2.數(shù)據(jù)挖掘技術(shù)在經(jīng)濟(jì)統(tǒng)計(jì)中的應(yīng)用
3.數(shù)據(jù)挖掘應(yīng)用案例 數(shù)據(jù)挖掘?qū)嵱冒咐?/a>