2017年紅河中考數(shù)學(xué)模擬真題及答案(2)
故答案為5;
18.手機(jī)上常見(jiàn)的wifi標(biāo)志所示,它由若干條圓心相同的圓弧組成,其圓心角為90°,最小的扇形半徑為1.若每?jī)蓚€(gè)相鄰圓弧的半徑之差為1,由里往外的陰影部分的面積依次記為S1、S2、S3…,則S1+S2+S3+…+S20= 195π .
【考點(diǎn)】MO:扇形面積的計(jì)算.
【分析】先利用扇形的面積公式分別計(jì)算出S1= π;S2= π+π;S3= π+2π,則利用此規(guī)律得到S20= π+19π,然后把它們相加即可.
【解答】解:S1= π•12= π;
S2= π•(32﹣22)= π+π;
S3= π•(52﹣42)= π+2π;
…
S20= π+19π;
∴S1+S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.
故答案為195π.
三、解答題(本大題共7小題,共66分.解答要寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
19.某校數(shù)學(xué)課題學(xué)習(xí)小組在“測(cè)量教學(xué)樓高度”的活動(dòng)中,設(shè)計(jì)了以下兩種方案:
課題 測(cè)量教學(xué)樓高度
方案 一 二
圖示
測(cè)得數(shù)據(jù) CD=6.9m,∠ACG=22°,∠BCG=13°, EF=10m,∠AEB=32°,∠AFB=43°
參考數(shù)據(jù) sin22°≈0.37,cos22°≈0.93,
tan22°≈0.40
sin13°≈0.22,cos13°≈0.97
tan13°≈0.23 sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
sin43°≈0.68,cos43°≈0.73,tan43°≈0.93
請(qǐng)你選擇其中的一種方法,求教學(xué)樓的高度(結(jié)果保留整數(shù))
【考點(diǎn)】T8:解直角三角形的應(yīng)用.
【分析】若選擇方法一,在Rt△BGC中,根據(jù)CG= 即可得出CG的長(zhǎng),同理,在Rt△ACG中,根據(jù)tan∠ACG= 可得出AG的長(zhǎng),根據(jù)AB=AG+BG即可得出結(jié)論.
若選擇方法二,在Rt△AFB中由tan∠AFB= 可得出FB的長(zhǎng),同理,在Rt△ABE中,由tan∠AEB= 可求出EB的長(zhǎng),由EF=EB﹣FB且EF=10,可知 ﹣ =10,故可得出AB的長(zhǎng).
【解答】解:若選擇方法一,解法如下:
在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,
∵CG= ≈ =30,
在Rt△ACG中,∠AGC=90°,∠ACG=22°,
∵tan∠ACG= ,
∴AG=30×tan22°≈30×0.40=12,
∴AB=AG+BG=12+6.9≈19(米).
答:教學(xué)樓的高度約19米.
若選擇方法二,解法如下:
在Rt△AFB中,∠ABF=90°,∠AFB=43°,
∵tan∠AFB= ,
∴FB= ≈ ,
在Rt△ABE中,∠ABE=90°,∠AEB=32°,
∵tan∠AEB= ,
∴EB= ≈ ,
∵EF=EB﹣FB且EF=10,
∴ ﹣ =10,解得AB=18.6≈19(米).
答:教學(xué)樓的高度約19米.
20.目前中學(xué)生帶手機(jī)進(jìn)校園現(xiàn)象越來(lái)越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無(wú)所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)1萬(wàn)名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;
(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從這4位家長(zhǎng)中選2位家長(zhǎng)參加學(xué)校組織的家?;顒?dòng),用列表法或畫(huà)樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.
【考點(diǎn)】X6:列表法與樹(shù)狀圖法;V5:用樣本估計(jì)總體;V9:頻數(shù)(率)分布折線圖;VB:扇形統(tǒng)計(jì)圖.
【分析】(1)用B類(lèi)的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以C類(lèi)所占的百分比得到扇形C所對(duì)的圓心角的度數(shù),再計(jì)算出C類(lèi)人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(3)用10000乘以D類(lèi)的百分比可估計(jì)持反對(duì)態(tài)度的家長(zhǎng)的總數(shù);
(4)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出2人來(lái)自不同班級(jí)的結(jié)果數(shù),然后根據(jù)概率公式求解.
【解答】解:(1)共調(diào)查的中學(xué)生家長(zhǎng)數(shù)是:40÷20%=200(人);
(2)扇形C所對(duì)的圓心角的度數(shù)是:360°×(1﹣20%﹣15%﹣60%)=18°,
C類(lèi)的人數(shù)是:200×(1﹣20%﹣15%﹣60%)=10(人),
補(bǔ)圖如下:
(3)根據(jù)題意得:
10000×60%=6000(人),
答:10000名中學(xué)生家長(zhǎng)中有6000名家長(zhǎng)持反對(duì)態(tài)度;
(4)設(shè)初三(1)班兩名家長(zhǎng)為A1,A2,初三(2)班兩名家長(zhǎng)為B1,B2,
畫(huà)樹(shù)狀圖為:
共有12種等可能的結(jié)果數(shù),其中2人來(lái)自不同班級(jí)共有8種,
所以選出的2人來(lái)自不同班級(jí)的概率= = .
21.小明早晨從家里出發(fā)勻速步行去上學(xué),小明的媽媽在小明出發(fā)后10分鐘,發(fā)現(xiàn)小明的數(shù)學(xué)課本沒(méi)帶,于是她帶上課本立即勻速騎車(chē)按小明上學(xué)的路線追趕小明,結(jié)果與小明同時(shí)到達(dá)學(xué)校.已知小明在整個(gè)上學(xué)途中,他出發(fā)后t分鐘時(shí),他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關(guān)系的圖象中的折線段OA﹣AB所示.
(1)試求折線段OA﹣AB所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)請(qǐng)解釋圖中線段AB的實(shí)際意義;
(3)請(qǐng)?jiān)谒o的圖中畫(huà)出小明的媽媽在追趕小明的過(guò)程中,她所在位置與家的距離s(千米)與小明出發(fā)后的時(shí)間t(分鐘)之間函數(shù)關(guān)系的圖象.(友情提醒:請(qǐng)對(duì)畫(huà)出的圖象用數(shù)據(jù)作適當(dāng)?shù)臉?biāo)注)
【考點(diǎn)】FH:一次函數(shù)的應(yīng)用.
【分析】(1)OA為正比例函數(shù)圖象,可以用待定系數(shù)法求出;
(2)AB段離家距離沒(méi)發(fā)生變化說(shuō)明在以家為圓心做曲線運(yùn)動(dòng);
(3)媽媽的速度正好是小明的2倍,所以媽媽走弧線路用(20﹣12)÷2=4分鐘.
【解答】解:(1)線段OA對(duì)應(yīng)的函數(shù)關(guān)系式為:s= t(0≤t≤12)
線段AB對(duì)應(yīng)的函數(shù)關(guān)系式為:s=1(12
(2)圖中線段AB的實(shí)際意義是:
小明出發(fā)12分鐘后,沿著以他家為圓心,1千米為半徑的圓弧形道路上勻速步行了8分鐘;
(3)由圖象可知,小明花20分鐘到達(dá)學(xué)校,則小明的媽媽花20﹣10=10分鐘到達(dá)學(xué)校,可知小明媽媽的速度是小明的2倍,即:小明花12分鐘走1千米,則媽媽花6分鐘走1千米,故D(16,1),小明花20﹣12=8分鐘走圓弧形道路,則媽媽花4分鐘走圓弧形道路,故B(20,1).
媽媽的圖象經(jīng)過(guò)(10,0)(16,1)(20,1)中折線段CD﹣DB就是所作圖象.
22.LED燈具有環(huán)保節(jié)能、投射范圍大、無(wú)頻閃、使用壽命較長(zhǎng)等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用,某校數(shù)學(xué)興趣小組為了解LED燈泡與普通白熾燈泡的銷(xiāo)售情況,進(jìn)行了市場(chǎng)調(diào)查:某商場(chǎng)購(gòu)進(jìn)一批30瓦的LED燈泡和普通白熾燈泡進(jìn)行銷(xiāo)售,其進(jìn)價(jià)與標(biāo)價(jià)如下表:
LED燈泡 普通白熾燈泡
進(jìn)價(jià)(元) 45 25
標(biāo)價(jià)(元) 60 30
(1)該商場(chǎng)購(gòu)進(jìn)了LED燈泡與普通白熾燈泡共300個(gè),LED燈泡按標(biāo)價(jià)進(jìn)行銷(xiāo)售,而普通白熾燈泡打九折銷(xiāo)售,當(dāng)銷(xiāo)售完這批燈泡后可以獲利3200元,求該商場(chǎng)購(gòu)進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個(gè)?
(2)由于春節(jié)期間熱銷(xiāo),很快將兩種燈泡銷(xiāo)售完,若該商場(chǎng)計(jì)劃再次購(gòu)進(jìn)兩種燈泡120個(gè),在不打折的情況下,請(qǐng)問(wèn)如何進(jìn)貨,銷(xiāo)售完這批燈泡時(shí)獲利最多且不超過(guò)進(jìn)貨價(jià)的30%,并求出此時(shí)這批燈泡的總利潤(rùn)為多少元?
【考點(diǎn)】FH:一次函數(shù)的應(yīng)用;9A:二元一次方程組的應(yīng)用.
【分析】(1)設(shè)該商場(chǎng)購(gòu)進(jìn)LED燈泡x個(gè),普通白熾燈泡的數(shù)量為y個(gè),利用該商場(chǎng)購(gòu)進(jìn)了LED燈泡與普通白熾燈泡共300個(gè)和銷(xiāo)售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;
(2)設(shè)該商場(chǎng)購(gòu)進(jìn)LED燈泡a個(gè),則購(gòu)進(jìn)普通白熾燈泡個(gè),這批燈泡的總利潤(rùn)為W元,利用利潤(rùn)的意義得到W=(60﹣45)a+(30﹣25)=10a+600,再根據(jù)銷(xiāo)售完這批燈泡時(shí)獲利最多且不超過(guò)進(jìn)貨價(jià)的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質(zhì)解決問(wèn)題.
【解答】解:(1)設(shè)該商場(chǎng)購(gòu)進(jìn)LED燈泡x個(gè),普通白熾燈泡的數(shù)量為y個(gè),
根據(jù)題意得 ,
解得 ,
答:該商場(chǎng)購(gòu)進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為200個(gè)和100個(gè);
(2)設(shè)該商場(chǎng)購(gòu)進(jìn)LED燈泡a個(gè),則購(gòu)進(jìn)普通白熾燈泡個(gè),這批燈泡的總利潤(rùn)為W元,
根據(jù)題意得W=(60﹣45)a+(30﹣25)
=10a+600,
∵10a+600≤[45a+25]×30%,解得a≤75,
∵k=10>0,
∴W隨a的增大而增大,
∴a=75時(shí),W最大,最大值為1350,此時(shí)購(gòu)進(jìn)普通白熾燈泡=45個(gè).
答:該商場(chǎng)購(gòu)進(jìn)LED燈泡75個(gè),則購(gòu)進(jìn)普通白熾燈泡45個(gè),這批燈泡的總利潤(rùn)為1350元.
23.1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形:
(1)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),CD=BE嗎?若相等請(qǐng)證明,若不等于請(qǐng)說(shuō)明理由;
(2)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),△AMN還是等邊三角形嗎?若是請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由(可用第一問(wèn)結(jié)論).
【考點(diǎn)】KM:等邊三角形的判定與性質(zhì);KD:全等三角形的判定與性質(zhì);R2:旋轉(zhuǎn)的性質(zhì).
【分析】(1)CD=BE.利用“等邊三角形的三條邊相等、三個(gè)內(nèi)角都是60°”的性質(zhì)證得△ABE≌△ACD;然后根據(jù)全等三角形的對(duì)應(yīng)邊相等即可求得結(jié)論CD=BE;
(2)△AMN是等邊三角形.首先利用全等三角形“△ABE≌△ACD”的對(duì)應(yīng)角相等、已知條件“M、N分別是BE、CD的中點(diǎn)”、等邊△ABC的性質(zhì)證得△ABM≌△ACN;然后利用全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一個(gè)角是60°的等腰三角形的正三角形.
【解答】解:(1)CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,
∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,
∴∠BAE=∠DAC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS)
∴CD=BE;
(2)△AMN是等邊三角形.理由如下:
∵△ABE≌△ACD,
∴∠ABE=∠ACD.
∵M(jìn)、N分別是BE、CD的中點(diǎn),∴BM=CN
∵AB=AC,∠ABE=∠ACD,
在△ABM和△ACN中,
,
∴△ABM≌△ACN(SAS).
∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等邊三角形.
24.,在Rt△ABC中,∠C=90°,sinA= ,AB=10,點(diǎn)O為AC上一點(diǎn),以O(shè)A為半徑作⊙O交AB于點(diǎn)D,BD的中垂線分別交BD,BC于點(diǎn)E,F(xiàn),連結(jié)DF.
(1)求證:DF為⊙O的切線;
(2)若AO=x,DF=y,求y與x之間的函數(shù)關(guān)系式.
【考點(diǎn)】ME:切線的判定與性質(zhì);KG:線段垂直平分線的性質(zhì);T7:解直角三角形.
【分析】(1)連接OD,由于EF是BD的中垂線,DF=BF.從而可知∠FDB=∠B,又因?yàn)镺A=OD,所以∠OAD=∠ODA,從而可證明∠ODF=90°;
(2)連接OF,由題意可知:AO=x,DF=y,OC=6﹣x,CF=8﹣y,然后在Rt△COF中與Rt△ODF中利用勾股定理分別求出OF,化簡(jiǎn)原式即可求出答案.
【解答】(1)連接OD.
∵OA=OD,
∴∠OAD=∠ODA,
∵EF是BD的中垂線,
∴DF=BF.
∴∠FDB=∠B,
∵∠C=90°,
∴∠OAD+∠B=90°.
∴∠ODA+∠FDB=90°.
∴∠ODF=90°,
又∵OD為⊙O的半徑,
∴DF為⊙O的切線,
(2)連接OF.
在Rt△ABC中,
∵∠C=90°,sinA= ,AB=10,
∴AC=6,BC=8,
∵AO=x,DF=y,
∴OC=6﹣x,CF=8﹣y,
在Rt△COF中,
OF2=(6﹣x)2+(8﹣x)2
在Rt△ODF中,
OF2=x2+y2
∴(6﹣x)2+(8﹣x)2=x2+y2,
∴y=﹣ x+ (0
25.,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣ x2+ x+4經(jīng)過(guò)A、B兩點(diǎn).
(1)寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)P,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【考點(diǎn)】HF:二次函數(shù)綜合題.
【分析】(1)拋物線的解析式中,令x=0,能確定點(diǎn)B的坐標(biāo);令y=0,能確定點(diǎn)A的坐標(biāo).
(2)四邊形PBCA可看作△ABC、△PBA兩部分;△ABC的面積是定值,關(guān)鍵是求出△PBA的面積表達(dá)式;若設(shè)直線l與直線AB的交點(diǎn)為Q,先用t表示出線段PQ的長(zhǎng),而△PAB的面積可由( PQ•OA)求得,在求出S、t的函數(shù)關(guān)系式后,由函數(shù)的性質(zhì)可求得S的最大值.
(3)△PAM中,∠APM是銳角,而PM∥y軸,∠AMP=∠ACO也不可能是直角,所以只有∠PAC是直角一種可能,即 直線AP、直線AC垂直,此時(shí)兩直線的斜率乘積為﹣1,先求出直線AC的解析式,聯(lián)立拋物線的解析式后可求得點(diǎn)P的坐標(biāo).
【解答】解:(1)拋物線y=﹣ x2+ x+4中:
令x=0,y=4,則 B(0,4);
令y=0,0=﹣ x2+ x+4,解得 x1=﹣1、x2=8,則 A(8,0);
∴A(8,0)、B(0,4).
(2)△ABC中,AB=AC,AO⊥BC,則OB=OC=4,∴C(0,﹣4).
由A(8,0)、B(0,4),得:直線AB:y=﹣ x+4;
依題意,知:OE=2t,即 E(2t,0);
∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;
S=S△ABC+S△PAB= ×8×8+ ×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;
∴當(dāng)t=2時(shí),S有最大值,且最大值為64.
(3)∵PM∥y軸,∴∠AMP=∠ACO<90°;
而∠APM是銳角,所以△PAM若是直角三角形,只能是∠PAM=90°;
由A(8,0)、C(0,﹣4),得:直線AC:y= x﹣4;
所以,直線AP可設(shè)為:y=﹣2x+h,代入A(8,0),得:
﹣16+h=0,h=16
∴直線AP:y=﹣2x+16,聯(lián)立拋物線的解析式,得:
,解得 、
∴存在符合條件的點(diǎn)P,且坐標(biāo)為(3,10).
猜你喜歡: