初中數(shù)學(xué)成績快速提升的方法
一分耕耘一分收獲,想要在初中的時候提升自己的數(shù)學(xué)成績,就需要付出一定的代價。下面是學(xué)習(xí)啦小編給大家整理的初中數(shù)學(xué)成績快速提升的方法,供大家參閱!
初中數(shù)學(xué)成績快速提升的方法
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。其實你只講對了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數(shù)的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰記住了這些游戲規(guī)則,誰就能順利地做游戲;誰違反了這些游戲規(guī)則,誰就被判錯。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度x時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的方法加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。這就是運用“對應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標(biāo)平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)。“對應(yīng)”的思想在今后的學(xué)習(xí)會發(fā)揮越來越大的作用。
三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。
自學(xué)能力越強,悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,能不能運用自己所學(xué)過的已掌握的舊知識去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識的無矛盾性,你所學(xué)過的數(shù)學(xué)知識永遠都是有用的,都是正確的,數(shù)學(xué)的進一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實,就為以后的進取奠定了基礎(chǔ),就不難自學(xué)新課。同時,在預(yù)習(xí)新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽老師講新課時總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯”,就是因為沒有預(yù)習(xí),沒有帶著問題學(xué),沒有將“要我學(xué)”真正變?yōu)?ldquo;我要學(xué)”,力求把知識變?yōu)樽约旱?。學(xué)來學(xué)去,知識還是別人的。檢驗數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨立解題、解對題才是學(xué)好數(shù)學(xué)的標(biāo)志。
四、自信才能自強
在考試中,總是看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍微難一點的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學(xué)過的知識把它解出來。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。
具體解題時,一定要認(rèn)真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就干瞪眼,無從下手。當(dāng)然,做題先從哪兒下手是一件棘手的事,不一定找得準(zhǔn)。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什么,得出的越多越好,然后從中選擇與其它條件有關(guān)的、或與結(jié)論有關(guān)的、或與題目中的隱含條件有關(guān)的,進行推理或演算。一般難題都有多種解法,要相信利用這道題的條件,加上自己學(xué)過的那些知識,一定能推出正確的結(jié)論。
數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節(jié)省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。
提高初中數(shù)學(xué)成績的規(guī)劃
一、初中數(shù)學(xué)學(xué)習(xí)的一般方法:
1.突出一個“勤”字(克服一個“惰”字)
數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”
“勤能補拙是良訓(xùn),一分辛勞一分才:
我們在學(xué)習(xí)的時候要突出一個勤字,克服一個“懶”字,怎么突出“勤”字
“聰”:怎么個勤法,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息)
“口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息)那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手”
“手勤”(動手多實踐,不僅光做題,做課件,做模型)
這樣的人聰明不聰明?
最大的提高學(xué)習(xí)效率,首先要做到—— 上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識
2.學(xué)好初中數(shù)學(xué)還有兩個要點,要狠抓兩個要點:
學(xué)好數(shù)學(xué),一要(動手),二要(動腦)。
動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個為什么
動手就是多實踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)
同學(xué)就是“題不離手”,這兩個要點大家要記住。
“動腦又動手,才能最大地發(fā)揮大腦的效率”
3.做到“三個一遍”
大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?
培根(18-19世紀(jì)英國的哲學(xué)家)——“知識就是力量”
“重復(fù)是學(xué)習(xí)之母”
如何重復(fù),我給你們解釋一下:
“上課要認(rèn)真聽一遍,動手推一遍,想一遍”
“下課 看 ”
“考試前 ”
4.重視“四個依據(jù)”
讀好一本教科書——它是教學(xué)、中考的主要依據(jù);
記好一本筆記 ——它是教師多年經(jīng)驗的結(jié)晶;
做好做凈一本習(xí)題集——它是使知識拓寬;
記好一本心得筆記,最好每人自己準(zhǔn)備一本錯題集
二、分課前、課上、課后三個方面來談一談數(shù)學(xué)的學(xué)習(xí)。
1.課前做什么,預(yù)習(xí)。
有的同學(xué)會認(rèn)為預(yù)習(xí)是浪費時間,上課聽老師講講不就可以了,為什么還要花時間預(yù)習(xí)。其實預(yù)習(xí)非但不浪費時間,而且有很大的益處。
首先,預(yù)習(xí)是對自己自學(xué)能力的鍛煉。
老師不可能教給你全部的知識,很多的知識都是靠自己自學(xué)得到的,這就需要我們有良好的自學(xué)能力。
其次,通過自己預(yù)習(xí)得到的要比通過上課聽老師講得到的印象要深刻的多。
那該如何預(yù)習(xí),預(yù)習(xí)些什么內(nèi)容呢?
第一,要看課本,看課本上的基本概念和基本例題,對這部分內(nèi)容要做到理解。因為這就是基礎(chǔ),萬變不離其宗,后面的任何變化都離不開這個基礎(chǔ)。
第二,在理解基本概念的基礎(chǔ)上完成課后的隨堂練習(xí)。因為通過什么來檢測你是否理解了概念,只有通過題目。
課后的隨堂練習(xí)的設(shè)置就是理解基本概念后的簡單的運用。
如果預(yù)習(xí)的過程中有不懂的地方,要在書上做好記號,上課時就要著重聽這部分內(nèi)容;
如果內(nèi)容簡單,自己能理解,那上課時就要聽老師是如何講解的,和自己對照一下,看看自己的理解是否正確,或者看看有沒有其他的解題思路
2.課上做什么,認(rèn)真聽講。
聽課是學(xué)習(xí)中最重要的環(huán)節(jié),是準(zhǔn)確的掌握所學(xué)知識的關(guān)鍵。
課上認(rèn)真聽十分鐘勝過課后自己看書三十分鐘。那么上課該如何認(rèn)真聽講,聽什么。
第一、帶著在預(yù)習(xí)中未懂的問題聽課,注意力集中,盡可能把疑點在課中解決。
第二,對于在預(yù)習(xí)中認(rèn)為弄懂了的問題,主要聽老師的講解是否和自己的理解一致,糾正自己在預(yù)習(xí)中對一些知識的片面理解或錯誤理解。
第三,在預(yù)習(xí)中沒有弄懂的問題,通過老師講懂了或還有疑問,要在課堂上把關(guān)鍵的地方記下來,課后要及時進行向老師請教,弄懂、弄明白。
第四,在聽課中注意不能只聽問題的答案,關(guān)鍵是聽老師講解例題的解題思路,明白了解題思路,你是學(xué)會了做這一類題,而不是只是一道題。
例題是為鞏固數(shù)學(xué)知識而講,例題的作用是舉一反三。有人做過這樣一個實驗:
一個老師帶著一個初一班,他每周都測驗他的學(xué)生,而且公開告訴他的學(xué)生,考題全部他上課講的例題。
學(xué)生開始一片嘩然,90%的學(xué)生有信心拿滿分,只有班上幾個最差的學(xué)生不敢這么說,很快第一次測驗結(jié)果出來了,及格率48%,滿分率不到8%,第二次情況有所好轉(zhuǎn),初一時這個班數(shù)學(xué)成績與同年級數(shù)學(xué)特長班平均分相差12.5分。
初二時與數(shù)學(xué)班只差1.5分,比年級平均分高10分。初三畢業(yè),這個班幾乎與數(shù)學(xué)特長班沒有區(qū)別。
第五,注意聽老師在課堂中補充的例題,這些例題通常具有代表性,聽老師的解題思路,拓寬自己的知識,要學(xué)會自己可以動手解決這一類問題。
3.課后該怎么做,完成練習(xí)和作業(yè)。
要學(xué)好數(shù)學(xué),必須多做練習(xí),但并不是題海戰(zhàn)術(shù)。只顧看書,而不做或少做練習(xí),是不可能學(xué)好數(shù)學(xué)的。而一味的做題,而不顧解題方法,也是很難在學(xué)習(xí)上收到成效的。
做練習(xí)要在有充分的準(zhǔn)備之后,認(rèn)真獨立地完成。
所謂有充分準(zhǔn)備,就是要先復(fù)習(xí)今天所學(xué)的知識和老師補充的例題,把課本上的知識弄懂之后才能做練習(xí)。
如果課本知識還有不懂之處,應(yīng)先復(fù)習(xí)課文,詢問同學(xué)或老師,直至懂了之后再做練習(xí)。
所謂認(rèn)真,是指對每個習(xí)題都要認(rèn)真思考,對問題的每個細節(jié)都應(yīng)思考清楚。注意養(yǎng)成一個全面細致地思考問題的習(xí)慣。
這種良好習(xí)慣一旦養(yǎng)成,它會在你的一生中大有益處。另一方面,要認(rèn)真演算,注意解答表述的條理性和解題格式的規(guī)范性。
許多同學(xué)常常在考試中馬虎出錯,究其根源,必然形成馬馬虎虎的壞習(xí)慣。而“馬虎”會長久地帶來危害,這種壞習(xí)慣一旦養(yǎng)成,十分頑固,很難克服。
所謂獨立完成作業(yè),就是要靠自己的能力完成作業(yè)。因為做練習(xí)的目的,一是鞏固所學(xué)知識,二是檢查對知識的理解是否正確,培養(yǎng)和提高分析解決問題的能力。
要敢于啃難題。遇到難題一定要反復(fù)仔細推敲條件,深入思考,在山窮水盡、自己能力確實承受不了的情況下,問問別人是可以的,不要一覺得難,就不想做了。
當(dāng)然,做難題要耗費較長的時間。有些同學(xué)以為這樣做不合算,不如問問省事,這種想法是不全面的。
其實,帳得算兩筆,比如你由于解難題耗費的時間較長聯(lián)想過很多知識,設(shè)想了很多解法,都失敗了,似乎收獲是“零”,但事實上,你獲得了大量的“副產(chǎn)品”,而這“副產(chǎn)品“的價值會遠遠大于本題目的價值。
因為,由于解題的迫切需要聯(lián)想了很多知識,恰好是對這許許多多知識積極的復(fù)習(xí);
你想出了很多方法,雖然沒有能解決這個題目,但它是很好的思維訓(xùn)練,對提高思維能力起到了不可低估的作用,況且這一個個方法很可能在解決其他題目上奏效。
大數(shù)學(xué)家希爾伯特把“費爾馬大定理”這道難題叫做“能下金蛋的母雞”。
正是因為有很多數(shù)學(xué)家在攻克“費爾馬大定理”的失敗中,發(fā)現(xiàn)和開創(chuàng)了許多新的數(shù)學(xué)領(lǐng)域,大大地推進了數(shù)學(xué)的發(fā)展。
對于數(shù)學(xué)《評價手冊》:學(xué)習(xí)教吃力的同學(xué)只要完成基本題就可以了,中等的同學(xué)完成辨析與反思;
好的同學(xué)加上探索與思考;還有額外學(xué)習(xí)能力的同學(xué)可以選擇好一本課外書,自己挑選部分習(xí)題、能夠鞏固所學(xué)知識并拓展知識面的,在做題時盡量講究一題多解,發(fā)展自己分析問題和解決問題的能力。
做過的題目希望大家一段時間(一周之類)要消化,對于這類題目的解題方法要掌握,爭取做到舉一反三,觸類旁通,在練習(xí)當(dāng)中,我認(rèn)為“做”是次要的,而“思”是主要的。
出錯的地方也正是我們學(xué)習(xí)中最薄弱的地方,把這些地方弄懂弄通,避免在同一地方摔倒二次,這比把十道習(xí)題演算正確收效也許更大一些。
4.復(fù)習(xí)與總結(jié)。
復(fù)習(xí)是為了鞏固,和遺忘做斗爭;總結(jié)是為了條理知識,發(fā)現(xiàn)、掌握規(guī)律,積累經(jīng)驗,有所提高。
學(xué)完每一章,要及時做好階段復(fù)習(xí)。
階段復(fù)習(xí)要圍繞每一節(jié)知識的重點、難點,閱讀教材、聽課筆記、練習(xí)本,從中提煉出本章的知識重點和難點,特別對于曾不大懂和理解錯誤或不夠深度的地方,要著重復(fù)習(xí)鞏固。
凡是在作業(yè)或測驗中不會做或做錯了的題目,在階段復(fù)習(xí)中要獨立做一遍,檢查一下對這些題目自己是否已經(jīng)掌握。
有些同學(xué)多次在某一類問題上出現(xiàn)錯誤,或曾不會做的題目,再考時仍不會做,正是沒有完成復(fù)習(xí)任務(wù)的結(jié)果。
較難的知識與題日,不僅難做、難理解,而且很容易忘。反復(fù)復(fù)習(xí)的本身,則是與遺忘作斗爭的有效方法。
階段總結(jié)是十分必要的,通過階段復(fù)習(xí),應(yīng)該有較大的提高。華羅庚有句名言:“讀書要由薄到厚,再由厚到薄”。
階段總結(jié),正是要完成由厚到薄的過程??偨Y(jié)要提煉出每一章知識的重點、難點,每一小節(jié)知識的重點與本章知識重點的聯(lián)系,做出條理性的歸納和概括,從而積累解題經(jīng)驗,提高分析解題的能力。
5.課外自學(xué)與研究。
課外自學(xué)與研究的目的是擴大知識面,開闊眼界,掌握與積累思維方法和解題方法,進一步提高分析解題能力。
圍繞所學(xué)的教材進度看一些課外參考書及數(shù)學(xué)雜志,作一些較新鮮或難度較大的習(xí)題。
課外自學(xué)應(yīng)該是有計劃地有節(jié)制地進行,不要影響以上環(huán)節(jié)的學(xué)習(xí),更不要影響其它學(xué)科的學(xué)習(xí)。在課外自學(xué)的過程中,發(fā)現(xiàn)一些新穎而有價值的習(xí)題、一些好地思維方法與解題方法,應(yīng)該記下來,以便進一步學(xué)習(xí)掌握。
愛因斯坦說過:“成功==艱苦的勞動+正確的方法+少說空話”。
對于渴望成功的同學(xué)來說,艱苦的勞動與少說空話是比較容易做到的,而正確的方法卻不是每個人都能摸索得出來的。……
學(xué)習(xí)方法因人而異,望大家,“擇其善者而從之,其不善者而改之”。務(wù)使你擁有一套適合自己的學(xué)習(xí)方法。
以上就是愛教網(wǎng)為您提供的有關(guān)如何學(xué)好初中數(shù)學(xué)?提高初中數(shù)學(xué)成績的學(xué)習(xí)計劃的全部內(nèi)容,希望對您有所幫助。更多精彩內(nèi)容,敬請掃描下方二維碼,關(guān)注中考寶典。
快速提高初中數(shù)學(xué)成績的方法
1.掌握初中數(shù)學(xué)的學(xué)習(xí)技巧
初中數(shù)學(xué)的學(xué)習(xí)是需要一定的技巧的,比如前一天同學(xué)們學(xué)習(xí)了一些什么知識點,到了第二天,同學(xué)們就又很可能忘記了,這就要求同學(xué)們要去復(fù)習(xí),不復(fù)習(xí)的話,所學(xué)的知識點就會消失在腦海中,復(fù)習(xí)其實也是一門學(xué)習(xí)技巧,當(dāng)然還要掌握一定的做題方法等等。
2.掌握初中數(shù)學(xué)思想
數(shù)學(xué)思想,是很重要的,學(xué)習(xí)數(shù)學(xué)和學(xué)習(xí)其他學(xué)科不一樣,數(shù)學(xué)有數(shù)學(xué)的思維方式,數(shù)學(xué)有數(shù)學(xué)的解題方法,數(shù)學(xué)有數(shù)學(xué)的神奇與奧妙。同學(xué)們每次在做題目的時候都要想想如何去運用數(shù)學(xué)思想解題。
3.掌握初中數(shù)學(xué)的學(xué)習(xí)規(guī)律
任何一門學(xué)科都是有一定的學(xué)習(xí)規(guī)律的,很多同學(xué)都沒能夠掌握數(shù)學(xué)學(xué)習(xí)規(guī)律,所以他們學(xué)習(xí)起來很辛苦。長沙京翰教育的數(shù)學(xué)輔導(dǎo)老師指出,其實只要同學(xué)們掌握了數(shù)學(xué)學(xué)習(xí)規(guī)律,那么做起題目來就會特別輕松,一點也不會有問題。
看過初中數(shù)學(xué)成績快速提升的方法的人還看了:
初中數(shù)學(xué)成績快速提升的方法
下一篇:整式的加減法則