學(xué)習啦 > 腦力開發(fā) > 記憶力 > 快速記憶法 > 數(shù)學(xué)常用的記憶方法有哪些

數(shù)學(xué)常用的記憶方法有哪些

時間: 榮雪1109 分享

數(shù)學(xué)常用的記憶方法有哪些

  學(xué)習數(shù)學(xué),雖然是理科,但是要記憶的內(nèi)容也不少,記憶公式定理等需要記憶的內(nèi)容,你知道有什么記憶的好方法嗎?下面由學(xué)習啦小編給你帶來關(guān)于數(shù)學(xué)常用的記憶方法有哪些,希望對你有幫助!

  數(shù)學(xué)常用的記憶方法

  一、分類記憶法

  遇到數(shù)學(xué)公式較多,一時難于記憶時,可以將這些公式適當分組。例如求導(dǎo)公式有18個,就可以分成四組來記:(1)常數(shù)與冪函數(shù)的導(dǎo)數(shù)(2個);(2)指數(shù)與對數(shù)函數(shù)的導(dǎo)數(shù)(4個);(3)三角函數(shù)的導(dǎo)數(shù)(6個);(4)反三角函數(shù)的導(dǎo)數(shù)(6個)。求導(dǎo)法則有7個,可分為兩組來記:(1)和、差、積、商復(fù)合函數(shù)的導(dǎo)數(shù)(4個);(2)反函數(shù)、隱函數(shù)、冪指數(shù)函數(shù)的導(dǎo)數(shù)(3個)。

  二、推理記憶法

  許多數(shù)學(xué)知識之間邏輯關(guān)系比較明顯,要記住這些知識,只需記憶一個,而其余可利用推理得到,這種記憶稱為推理記憶。例如,平行四邊形的性質(zhì),我們只要記住它的定義,由定義推理得它的任一對角線把它平分成兩個全等三角形,繼而又推得它的對邊相等,對角相等,相鄰角互補,兩條對角線互相平分等性質(zhì)。

  三、標志記憶法

  在學(xué)習某一章節(jié)知識時,先看一遍,對于重要部分用彩筆在下面畫上波浪線,再記憶時,就不需要將整個章節(jié)的內(nèi)容從頭到尾逐字逐句的看了,只要看劃重點的地方并在它的啟示下就能記住本章節(jié)主要內(nèi)容,這種記憶稱為標志記憶。

  四、回想記憶法

  在重復(fù)記憶某一章節(jié)的知識時,不看具體內(nèi)容,而是通過大腦回想達到重復(fù)記憶的目的,這種記憶稱為回想記憶。在實際記憶時,回想記憶法與標志記憶法是配合使用的。

  初中數(shù)學(xué)基礎(chǔ)知識記憶方法

  1

  有理數(shù)的加法運算:

  同號相加一邊倒;異號相加“大”減“小”,

  符號跟著大的跑;絕對值相等“零”正好.

  2

  合并同類項:

  合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣.

  3

  去、添括號法則:

  去括號、添括號,關(guān)鍵看符號,

  括號前面是正號,去、添括號不變號,

  括號前面是負號,去、添括號都變號.

  4

  一元一次方程:

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒.

  5

  平方差公式:

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆.

  6

  完全平方公式:

  完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央.

  7

  因式分解:

  一提(公因式)二套(公式)三分組,細看幾項不離譜,

  兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

  四項仔細看清楚,若有三個平方數(shù)(項),

  就用一三來分組,否則二二去分組,

  五項、六項更多項,二三、三三試分組,

  以上若都行不通,拆項、添項看清楚.

  8

  單項式運算:

  加、減、乘、除、乘(開)方,三級運算分得清,

  系數(shù)進行同級(運)算,指數(shù)運算降級(進)行.

  9

  一元一次不等式解題的一般步驟:

  去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,

  兩邊除(以)負數(shù)時,不等號改向別忘了.

  10

  一元一次不等式組的解集:

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找

  一元二次不等式、一元一次絕對值不等式的解集:

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間.

  11

  分式混合運算法則:

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結(jié)果要求最簡.

  12

  分式方程的解法步驟:

  同乘最簡公分母,化成整式寫清楚,

  求得解后須驗根,原(根)留、增(根)舍,別含糊.

  13

  最簡根式的條件:

  最簡根式三條件,號內(nèi)不把分母含,

  冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點.

  14

  特殊點的坐標特征:

  坐標平面點(x,y),橫在前來縱在后;

  (+,+),(-,+),(-,-)和(+,-),四個象限分前后;

  x軸上y為0,x為0在y軸.

  象限角的平分線:

  象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反.

  平行某軸的直線:

  平行某軸的直線,點的坐標有講究,

  直線平行x軸,縱坐標相等橫不同;

  直線平行于y軸,點的橫坐標仍照舊

  15

  對稱點的坐標:

  對稱點坐標要記牢,相反數(shù)位置莫混淆,

  x軸對稱y相反,y軸對稱x相反;

  原點對稱最好記,橫縱坐標全變號.

3672565