學(xué)習(xí)啦 > 腦力開(kāi)發(fā) > 記憶力 > 記憶方法 > 初中數(shù)學(xué)知識(shí)趣味記憶口訣

初中數(shù)學(xué)知識(shí)趣味記憶口訣

時(shí)間: 榮雪1109 分享

初中數(shù)學(xué)知識(shí)趣味記憶口訣

  數(shù)學(xué)雖然是理科,但是要記憶的知識(shí)點(diǎn)是比較多,這也需要好的記憶方法或記憶口訣。下面是由學(xué)習(xí)啦小編給大家?guī)?lái)關(guān)于初中數(shù)學(xué)知識(shí)趣味記憶口訣,希望對(duì)大家有幫助!

  初中數(shù)學(xué)知識(shí)記憶口訣

  一、數(shù)與代數(shù)

  Ⅰ、數(shù)與式

  1.有理數(shù)的加法、乘法運(yùn)算

  同號(hào)相加一邊倒,異號(hào)相加“大”減“小”;符號(hào)跟著大的跑,絕對(duì)值相等“零”正好。

  同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零?!咀ⅰ?ldquo;大”減“小”是指絕對(duì)值的大小。

  2.合并同類(lèi)項(xiàng)

  合并同類(lèi)項(xiàng),法則不能忘;只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。

  3.去、添括號(hào)法則

  去括號(hào)、添括號(hào),關(guān)鍵看符號(hào);括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào);

  括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

  4.單項(xiàng)式運(yùn)算

  加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清;系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

  5.分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減;乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先;分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  6.平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差;積化和差變兩項(xiàng),完全平方不是它。

  7.完全平方公式

  首平方又末平方,二倍首末在中央;和的平方加再加,先減后加差平方。

  8.因式分解

  一提二套三分組,十字相乘也上數(shù);四種方法都不行,拆項(xiàng)添項(xiàng)去重組;重組無(wú)望試求根,

  換元或者算余數(shù);多種方法靈活選,連乘結(jié)果是基礎(chǔ);同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  9.二次三項(xiàng)式的因式分解

  先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。

  10.比和比例

  兩數(shù)相除也叫比,兩比相等叫比例;基本性質(zhì)第一條,外項(xiàng)積等內(nèi)項(xiàng)積;

  前后項(xiàng)和比后項(xiàng),組成比例叫合比;前后項(xiàng)差比后項(xiàng),組成比例是分比;

  兩項(xiàng)和比兩項(xiàng)差,比值相等合分比;前項(xiàng)和比后項(xiàng)和,比值不變叫等比;

  商定變量成正比,積定變量成反比;判斷四數(shù)成比例,兩端積等中間積。

  11.根式和無(wú)理式

  表示方根代數(shù)式,都可稱(chēng)其為根式;根式異于無(wú)理式,被開(kāi)方式無(wú)限制;

  無(wú)理式都是根式,區(qū)分它們有標(biāo)志;被開(kāi)方式有字母,才能稱(chēng)為無(wú)理式。

  12.最簡(jiǎn)根式的條件

  最簡(jiǎn)根式三條件:號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。

 ?、?、方程與不等式

  1.解一元一次方程

  已知未知鬧分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。

  先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng);系數(shù)化1還沒(méi)好,回代值等才算了。

  2.解一元一次不等式

  去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào);同類(lèi)項(xiàng)、合并好,再把系數(shù)來(lái)除掉;

  兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  3.解一元一次絕對(duì)值不等式

  大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。

  4.解一元一次不等式組

  大大取較大,小小取較小;大小、小大取中間,大大,小小無(wú)處找。

  5.解分式方程

  同乘最簡(jiǎn)公分母,化成整式寫(xiě)清楚;求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。

  6.解一元二次方程

  方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想;如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量;

  b、c相等都為零,等根是零不要忘;b、c同時(shí)不為零,因式分解或配方;

  也可直接套公式,因題而異擇良方。

  7.解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站;判別式值若非負(fù),曲線橫軸有交點(diǎn);

  a正開(kāi)口它向上,大于零則取兩邊;代數(shù)式若小于零,解集交點(diǎn)數(shù)之間;

  方程若無(wú)實(shí)數(shù)根,口上大零解為全;小于零將沒(méi)有解,開(kāi)口向下正相反。

 ?、?、函數(shù)

  1.坐標(biāo)系上坐標(biāo)點(diǎn)

  坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;X軸上y為0,x為0在Y軸。

  象限角的平分線,坐標(biāo)特征有特點(diǎn);一、三橫縱都相等,二、四橫縱恰相反。

  平行某軸的直線,點(diǎn)的坐標(biāo)有講究;平行于X軸,縱等橫不同;平行于Y軸,橫等縱不同。

  對(duì)稱(chēng)點(diǎn)坐標(biāo)要記牢,相反位置莫混淆;X軸對(duì)稱(chēng)y相反,Y軸對(duì)稱(chēng)X反;原點(diǎn)對(duì)稱(chēng)最好記,橫縱坐標(biāo)變符號(hào)。

  2.函數(shù)自變量的取值

  分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  3.判斷正比例函數(shù):

  判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走;一量表示另一量,是與否;若有還要看取值,全體實(shí)數(shù)都要有。

  4.正比例函數(shù)()圖像與性質(zhì)

  正比函數(shù)很簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;K正一三負(fù)二四,變化趨勢(shì)記心間;

  K正左低右邊高,同大同小向爬山;K負(fù)左高右邊低,一大另小下山巒。

  5.反比例函數(shù)()圖像與性質(zhì)

  反比函數(shù)雙曲線,所有都不過(guò)原點(diǎn);K正一三負(fù)二四,兩軸是它漸近線;

  K正左高右邊低,一三象限滑下山;K負(fù)左低右邊高,二四象限如爬山。

  6.一次函數(shù)()圖像與性質(zhì)

  一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;兩個(gè)系數(shù)k與b,作用之大莫小看;

  k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;

  k是斜率定夾角,b與Y軸來(lái)相見(jiàn);k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  7.一次函數(shù)()圖像與性質(zhì)

  二次方程零換y,二次函數(shù)便出現(xiàn);全體實(shí)數(shù)定義域,圖像叫做拋物線;

  拋物線有對(duì)稱(chēng)軸,兩邊單調(diào)正相反;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);

  開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn);b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);

  頂點(diǎn)非高即最低。上低下高很顯眼,如果要畫(huà)拋物線,平移也可去描點(diǎn);

  提取配方定頂點(diǎn),兩條途徑再挑選,若要平移也不難,先畫(huà)基礎(chǔ)拋物線,

  列表描點(diǎn)后連線,平移規(guī)律記心間,左加右減括號(hào)內(nèi),號(hào)外上加下要減。

  8.三角函數(shù)

  三角函數(shù)的增減性:正增余減。

  特殊三角函數(shù)值(30度、45度、60度)記憶:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。

  二、空間與圖形

 ?、瘛⒕€與角

  1.直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián);直線長(zhǎng)短不確定,可向兩方無(wú)限延;

  射線僅有一端點(diǎn),反向延長(zhǎng)成直線;線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。

  兩點(diǎn)定線是共性,組成圖形最常見(jiàn)。

  2.角

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角;共線反向是平角,平角之半叫直角;

  平角兩倍成周角,小于直角叫銳角;直平之間是鈍角,平周之間叫優(yōu)角;

  和為直角叫互余,和為平角叫互補(bǔ)。

  3.兩點(diǎn)間距離公式

  同軸兩點(diǎn)求距離,大減小數(shù)就為之;與軸等距兩個(gè)點(diǎn),間距求法亦如此;

  平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值;差方相加開(kāi)平方,距離公式要牢記。

 ?、?、平面圖形

  1.平行四邊形的判定

  要證平行四邊形,兩個(gè)條件才能行;一證對(duì)邊都相等,或證對(duì)邊都平行;

  一組對(duì)邊也可以,必須相等且平行;

  對(duì)角線,是個(gè)寶,互相平分“跑不了”;對(duì)角相等也有用,“兩組對(duì)角”才能成。

  2.矩形的判定

  任意一個(gè)四邊形,三個(gè)直角成矩形;對(duì)角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個(gè)直角叫矩形;兩對(duì)角線若相等,理所當(dāng)然為矩形。

  3.菱形的判定

  任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形;

  已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形。

  4.梯形的輔助線

  移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);

  延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;

  已知腰上一中線,莫忘作出中位線。

  5.三角形的輔助線

  題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連;

  三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長(zhǎng)中線翻一番。

  6.圓內(nèi)的正多邊形

  份相等分割圓,n值必須大于三,依次連接各分點(diǎn),內(nèi)接正n邊形在眼前.

  7.圓中比例線段

  遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來(lái)代替;

  遇等比,改等積,引用射影和圓冪;平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。

  初中數(shù)學(xué)幾何面積8個(gè)速背口訣

  求幾何圖形的面積有“三板斧”

  (1)直接用三角形,特殊四邊形,圓,扇形的面積公式來(lái)求。

  (2)間接割補(bǔ)法,把不規(guī)則圖形面積通過(guò)割補(bǔ)、運(yùn)動(dòng)、變形轉(zhuǎn)化為規(guī)則易求圖形面積的和或差。

  (3)特殊求法,即利用相似圖形的面積比等于相似比的平方,等底(等高)的三角形面積比等于高(底)比的性質(zhì)來(lái)解。

  其次有些乘法公式、勾股定理、三角形的一邊平行四邊形的比例式等性質(zhì),也可用面積法來(lái)推導(dǎo)。

  面積法是什么?

  運(yùn)用面積關(guān)系解決平面幾何體的方法,稱(chēng)為面積法。

  它是幾何中常用的一種方法。特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系會(huì)變成數(shù)量之間的關(guān)系。這個(gè)時(shí)候,問(wèn)題就化繁為簡(jiǎn)了,只需要計(jì)算,有事甚至可以不添置補(bǔ)助線就迎刃而解了!

  此外,用面積法還可以用來(lái)求線段長(zhǎng),證明線段相等(不等),角相等,比例式或等積式,求線段比等。雖然這些幾乎都可以用其他方法來(lái)解決,但是面積法無(wú)疑是一種更直接、簡(jiǎn)易、有效的方法。

  面積法的常用理論口訣

  1.三角形的中線把三角形分成兩個(gè)面積相等的部分。

  2.同底同高或等底等高的兩個(gè)三角形面積相等。

  3.平行四邊形的對(duì)角線把其分成兩個(gè)面積相等的部分。

  4.同底(等底)的兩個(gè)三角形面積的比等于高的比。

  同高(或等高)的兩個(gè)三角形面積的比等于底的比。

  5.三角形的面積等于等底等高的平行四邊形的面積的一半。

  6.三角形的中位線截三角形所得的三角形的面積等于原三角形面積的1/4

  7.三角形三邊中點(diǎn)的連線所成的三角形的面積等于原三角形面積的1/4

  8.有一個(gè)角相等或互補(bǔ)的兩個(gè)三角形的面積的比等于夾角的兩邊的乘積的比。

  面積法的常用解題思路

  1.分解法:通常把一個(gè)復(fù)雜的圖形,分解成幾個(gè)三角形。

  2.作平行線法:通過(guò)平行線找出同高(或等高)的三角形。

  3.利用有關(guān)性質(zhì)法:比如利用中點(diǎn)、中位線等的性質(zhì)。

  4.還可以利用面積解決其它問(wèn)題。
猜你喜歡:

1.趣味智力題|數(shù)學(xué)智力題

2.2016初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

3.數(shù)學(xué)知識(shí)要如何記

4.數(shù)學(xué)知識(shí)的快速記憶方法

5.初中語(yǔ)文記憶法口訣

6.人教版初中數(shù)學(xué)知識(shí)點(diǎn)匯總中考復(fù)習(xí)資料

3739879