2024年新高考全國1卷數(shù)學(xué)真題試卷
高考對基礎(chǔ)知識的考查既全面又突出重點(diǎn)。那么關(guān)于2024年新高考全國1卷數(shù)學(xué)真題試卷怎么做呢?以下是小編準(zhǔn)備的一些2024年新高考全國1卷數(shù)學(xué)真題試卷,僅供參考。
2024年新高考全國1卷數(shù)學(xué)真題試卷
新高考數(shù)學(xué)大題6大題型是什么
1、三角函數(shù)、向量、解三角形
(1)三角函數(shù)畫圖、性質(zhì)、三角恒等變換、和與差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)綜合題、三角題一般用平面向量進(jìn)行“包裝”,講究知識的交匯性,或?qū)⑷呛瘮?shù)與解三角形有機(jī)融合。
重視三角恒等變換下的性質(zhì)探究,重視考查圖形圖像的變換。
2、概率與統(tǒng)計(jì)
(1)古典概型。
(2)莖葉圖。
(3)直方圖。
(4)回歸方程。
(5)(理)概率分布、期望、方差、排列組合。概率題貼近生活、貼近實(shí)際,考查等可能 性事件、互斥事件、獨(dú)立事件的概率計(jì)算公 式,難度不算很大。
3、立體幾何
(1)平行。
(2)垂直。
(3)角。
(4)利用三視圖計(jì)算面積與體積。
(5)既可以用傳統(tǒng)的幾何法,也可以建立空間直角坐標(biāo)系,利用法向量等。
4、數(shù)列
(1)等差數(shù)列、等比數(shù)列、遞推數(shù)列是考查的熱點(diǎn),數(shù)列通項(xiàng)、數(shù)列前n項(xiàng)的和以及二者之間的關(guān)系。
(2)文理科的區(qū)別較大,理科多出現(xiàn)在壓軸題位置的卷型,理科注重?cái)?shù)學(xué)歸納法。
(3)錯位相減法、裂項(xiàng)求和法。
(4)應(yīng)用題。
5、圓錐曲線(橢圓)與圓
(1)橢圓為主線,強(qiáng)調(diào)圓錐曲線與直線的位置關(guān)系,突出韋達(dá)定理或差值法。
(2)圓的方程,圓與直線的位置關(guān)系。
(3)注重橢圓與圓、橢圓與拋物線等的組合題。
6、函數(shù)、導(dǎo)數(shù)與不等式
(1)函數(shù)是該題型的主體:三次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)及其復(fù)合函數(shù)。
(2)函數(shù)是考查的核心內(nèi)容,與導(dǎo)數(shù)結(jié)合,基本題型是判斷函數(shù)的單調(diào)性,求函數(shù)的最 值(極值),求曲線的切線方程,對參數(shù)取值范 圍、根的分布的探求,對參數(shù)的分 類討論以及代數(shù)推理等等。
(3)利用基本不等式、對勾函數(shù)性質(zhì)。
高考數(shù)學(xué)的答題技巧
1、函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學(xué)們在解題時可利用轉(zhuǎn)化思想進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
2、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學(xué)們在解答數(shù)學(xué)題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
3、特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因?yàn)橐粋€命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
4、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對于所求的未知量,先設(shè)法構(gòu)思一個與它有關(guān)的變量;二、確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
5、分類討論思想
同學(xué)們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶ο蟀硕喾N情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學(xué)們在分類討論解題時,要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。