學(xué)習(xí)啦>實(shí)用范文>工作計(jì)劃>教學(xué)工作計(jì)劃>

初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文五篇

時(shí)間: 浣靜1289 分享

  星星從不嫉妒太陽(yáng)的燦爛輝煌,它在自己的崗位上盡力發(fā)光。今天小編為大家?guī)?lái)的是初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文,希望可以幫助到大家。

  初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文一

  教材分析:

  《解一元一次方程(一)合并同類項(xiàng)與移項(xiàng)》是義務(wù)教育教科書七年級(jí)數(shù)學(xué)上冊(cè)第三章第二節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)會(huì)了有理數(shù)運(yùn)算,掌握了單項(xiàng)式、多項(xiàng)式的有關(guān)概念及同類項(xiàng)、合并同類項(xiàng),和等式性質(zhì),進(jìn)一步將所學(xué)知識(shí)運(yùn)用到解方程中。這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。合并同類項(xiàng)與移項(xiàng)是解方程的基礎(chǔ),解方程它的移項(xiàng)根據(jù)是等式性質(zhì)1、系數(shù)化為1它的根據(jù)是等式性質(zhì)2,解方程是今后進(jìn)一步學(xué)習(xí)不可缺少的知識(shí)。因而,解方程是初中數(shù)學(xué)中必須要掌握的重點(diǎn)內(nèi)容。

  設(shè)計(jì)思路:

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》中明確指出:學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?;谝陨侠砟?,結(jié)合本節(jié)課內(nèi)容及學(xué)生情況,教學(xué)設(shè)計(jì)中采用了探究發(fā)現(xiàn)法和多媒體輔助教學(xué)法,在學(xué)生已有的知識(shí)儲(chǔ)備基礎(chǔ)上,利用課件,鼓勵(lì)和引導(dǎo)學(xué)生采用自主探索與合作交流相結(jié)合的方式進(jìn)行學(xué)習(xí),讓學(xué)生始終處于積極探索的過(guò)程中,通過(guò)學(xué)生動(dòng)手練習(xí),動(dòng)腦思考,完成教學(xué)任務(wù)。其基本程序設(shè)計(jì)為:

  復(fù)習(xí)回顧、設(shè)問(wèn)題導(dǎo)入 探索規(guī)律、形成解法 例題講解、熟練運(yùn)算

  鞏固練習(xí)、內(nèi)化升華 回顧反思、進(jìn)行小結(jié) 達(dá)標(biāo)測(cè)試、反饋情況

  作業(yè)布置、反饋情況。

  教學(xué)目標(biāo):

  1、知識(shí)與技能:(1)通過(guò)分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,建立方程解決實(shí)際問(wèn)題,進(jìn)一步認(rèn)識(shí)方程模型的重要性;(2)、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

  2、過(guò)程與方法:通過(guò)解形如“a·+b=c·+d”形式的方程,體驗(yàn)數(shù)學(xué)的建模思想。

  3、情感、態(tài)度與價(jià)值觀:通過(guò)合作探究,培養(yǎng)學(xué)生積極思考、勇于探索的精神。

  教學(xué)重點(diǎn):建立方程解決實(shí)際問(wèn)題,會(huì)解“a·+b=c·+d”類型的一元一次方程。

  教學(xué)難點(diǎn):分析實(shí)際問(wèn)題中的相等關(guān)系,列出方程。

  教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練。

  教學(xué)準(zhǔn)備:多媒體課件等。

  預(yù)習(xí)要求:要求學(xué)生自學(xué)教材第88——89頁(yè)的課文內(nèi)容。然后根據(jù)自己的理解分析問(wèn)題2及例2;并試著進(jìn)行嘗試練習(xí)。找出自學(xué)中存在的問(wèn)題,以便課堂學(xué)習(xí)中解決。

  教學(xué)過(guò)程:

  一、準(zhǔn)備階段:

  1、知識(shí)回顧:

  (1)、用合并同類項(xiàng)的方法解一元一次方程的步驟是什么?

  (2)、解下列方程:

 ?、?-3·-2·=10 ②

  2、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。

  問(wèn)題:

  把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

  如何解決這個(gè)問(wèn)題呢?

  二、導(dǎo)學(xué)階段:

  (一)、出示本節(jié)課的學(xué)習(xí)目標(biāo):

  1、通過(guò)分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,建立用方程解決問(wèn)題的建模思想和方法;

  2、掌握移項(xiàng)方法,學(xué)會(huì)解“a·+b=c·+d”類型的一元一次方程,理解解方程的目標(biāo),體會(huì)解法中蘊(yùn)涵的化歸思想。

  (二)、合作交流,探究新知

  1、分析解決課前提出的問(wèn)題。

  問(wèn)題:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

  分析: 設(shè)這個(gè)班有·名學(xué)生.

  每人分3本,共分出___本,加上剩余的20本,這批書共____________本.

  每人分4本,需要______本,減去缺的25本,這批書共____________本.

  這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

  這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,

  即表示同一個(gè)量的兩個(gè)不同的式子相等.

  根據(jù)這一相等關(guān)系列得方程:

  方程的兩邊都有含·的項(xiàng)(3·和4·)和不含字母的常數(shù)項(xiàng)(20與-25),怎樣才能使它向 ·=a(常數(shù))的形式轉(zhuǎn)化呢?

  方法過(guò)程:

  2、總結(jié)移項(xiàng)的概念。

  像上面這樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做 “移項(xiàng)” .

  3、思考:上面解方程中“移項(xiàng)”起到了什么作用?

  4、例題學(xué)習(xí)

  運(yùn)用移項(xiàng)的方法解下列方程:

  三、課堂練習(xí):

  運(yùn)用移項(xiàng)的方法解下列方程:

  四、課堂小結(jié):

  本節(jié)課,我們學(xué)習(xí)了哪些知識(shí)?你還有哪些困惑?

  五、達(dá)標(biāo)測(cè)試:

  運(yùn)用移項(xiàng)的方法解下列方程:(25′×4=100′)

  六、預(yù)習(xí)作業(yè):

  1、預(yù)習(xí)作業(yè):自學(xué)課本第90頁(yè)的課文內(nèi)容及例4,完成第90頁(yè)練習(xí)2題;

  2、課后作業(yè):(1)

  初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文二

  教學(xué)目標(biāo)

  1、進(jìn)一步掌握列一元一次方程解應(yīng)用題;

  2、通過(guò)分析“順逆水”和“配套”問(wèn)題,進(jìn)一步經(jīng)歷運(yùn)用方程解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程模型的作用。

  重點(diǎn)難點(diǎn)

  分析題意、找等量關(guān)系和列方程是重點(diǎn);找出能夠表示問(wèn)題全部含義的相等關(guān)系是難點(diǎn)。

  教學(xué)方法

  指導(dǎo)探究,合作交流

  教學(xué)資源

  小黑板

  教學(xué)過(guò)程

  一、復(fù)習(xí)導(dǎo)入

  上節(jié)課我們學(xué)習(xí)了解含有括號(hào)的一元一次方程,現(xiàn)在我們來(lái)解兩道題:

  (1)2(·+3)=2.5(·-3);(2)2×1200·=2000(22-·)

  怎樣運(yùn)用這樣的方程來(lái)解決實(shí)際問(wèn)題呢?今天我們就來(lái)討論一下。

  二、例題

  例1 一艘船從甲碼頭到乙碼頭順流行駛,用了2小時(shí);從乙碼頭返回甲碼頭逆流行駛,用了2.5小時(shí)。已知水流的速度是3千米/時(shí),求船在靜水中的平均速度。

  (分析:順流行駛的速度、逆流行駛的速度、水流的速度、靜水中的速度之間有什么關(guān)系?

  順流的速度=靜水中的速度+水流的速度;

  逆流的速度=靜水中的速度-水流的速度。)

  問(wèn)題中的相等關(guān)系是什么?

  順?biāo)旭偟穆烦?逆水行駛的路程。[來(lái)源:學(xué)科網(wǎng)Z··K]

  設(shè)船在靜水中的平均速度為·千米/時(shí),那么順流的速度是什么?逆流的速度是什么?

  順流的速度是(·+3)千米/時(shí)逆流的速度是(·-3)千米/時(shí)。

  由些可得方程

  2(·+3)=2.5(·-3)

  由前面的解答,知·=27

  所以船在靜水中的速度是27千米/時(shí)。

  注意:要牢牢記住順流的速度=靜水中的速度+水流的速度;逆流的速度=靜水中的速度-水流的速度。

  例2 某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個(gè)或螺母2000個(gè),一個(gè)螺釘要配兩個(gè)螺母。為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?

  分析:當(dāng)問(wèn)題中的量比較多,關(guān)系比較復(fù)雜時(shí),我們可以把量分成兩類列表,從而使條件條理化,設(shè)未知數(shù)。

  問(wèn)題中的等量關(guān)系是什么?

  螺母的數(shù)量=2×螺釘?shù)臄?shù)量。

  由此,可列方程

  2×1200·=2000(22-·)

  由前面的解答可知·=10

  22-·=22-10=12

  所以應(yīng)分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母。

  注意:列表法是列方程解應(yīng)用題的一種行之有效的方法,有注意學(xué)習(xí)。

  三、五分鐘測(cè)試

  1、在一次美化校園活動(dòng)中,先安排31人去拔草,18人去植樹,后又是增派20人去支援他們,結(jié)果拔草的人數(shù)是植樹人數(shù)的2倍,問(wèn)支援拔草和植樹的人分別有多少人?

  (2、解下列方程:

  (1)0.6·=1/5 ·-3; (2)2(·-1)-3(·+1)=-6。

  四、課堂小結(jié)

  通過(guò)前面的學(xué)習(xí)討論,我們進(jìn)一步體會(huì)到列方程解決實(shí)際問(wèn)題的關(guān)鍵是正確地建立方程中的相等關(guān)系;同時(shí)知道所列方程的解不一定就是問(wèn)題的答案,必須檢驗(yàn)之后才能確定,這是一個(gè)要注意的問(wèn)題。

  作業(yè):

  課本98面4、5。

  初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文三

  一、教材分析:

  1、教材所處的地位和作用:

  從數(shù)學(xué)科學(xué)本身看,方程是代數(shù)學(xué)的核心內(nèi)容,正是對(duì)于它的研究推動(dòng)了整個(gè)代數(shù)學(xué)的發(fā)展,從代數(shù)中關(guān)于方程的分類看,一元一次方程是最簡(jiǎn)單的代數(shù)方程,也是所有代數(shù)方程的基礎(chǔ).教科書將本節(jié)內(nèi)容安排在第一節(jié),一方面是對(duì)小學(xué)學(xué)段已經(jīng)學(xué)過(guò)的有關(guān)算術(shù)方法解題和簡(jiǎn)單方程的運(yùn)用的進(jìn)一步發(fā)展,另一方面考慮引入一元一次方程后,可以盡早滲透模型化的思想,使學(xué)生盡早接觸利用一元一次方程解決實(shí)際問(wèn)題的方法.

  《課程標(biāo)準(zhǔn)》對(duì)本課時(shí)的要求是通過(guò)具體實(shí)例歸納出方程及一元一次方程的概念,根據(jù)相等關(guān)系列出方程.讓學(xué)生在歸納和總結(jié)的過(guò)程中,初步建立數(shù)學(xué)模型思想,訓(xùn)練學(xué)生主動(dòng)探究的能力,能結(jié)合情境發(fā)現(xiàn)并提出問(wèn)題,體會(huì)在解決問(wèn)題中與他人合作的重要性,獲得解決問(wèn)題的經(jīng)驗(yàn).

  2、教學(xué)目標(biāo):

  根據(jù)課標(biāo)的要求和本節(jié)內(nèi)容的特點(diǎn),我從知識(shí)技能、數(shù)學(xué)思考、情感價(jià)值觀三個(gè)方面確定本節(jié)課的目標(biāo):

  知識(shí)技能目標(biāo)

  ①通過(guò)對(duì)實(shí)際問(wèn)題的分析,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步,歸納并理解一元一次方程的概念,領(lǐng)悟一元一次方程的意義和作用.

 ?、谠趯W(xué)生根據(jù)問(wèn)題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過(guò)程中,培養(yǎng)學(xué)生獲取信息、分析問(wèn)題、處理問(wèn)題的能力.

  ③使學(xué)生經(jīng)歷把實(shí)際問(wèn)題抽象為數(shù)學(xué)方程的過(guò)程,認(rèn)識(shí)到方程是刻畫現(xiàn)實(shí)世界的一種有效的數(shù)學(xué)模型,初步體會(huì)建立數(shù)學(xué)模型的思想.

  數(shù)學(xué)思考目標(biāo)

  用字母表示未知數(shù),找出相等關(guān)系,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,通過(guò)列方程解決.

  情感價(jià)值目標(biāo):

  讓學(xué)生體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步,滲透化未知為已知的重要數(shù)學(xué)思想.體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識(shí)到許多實(shí)際問(wèn)題可以用數(shù)學(xué)方法解決,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情.

  3、重點(diǎn)、難點(diǎn):

  結(jié)合以上目標(biāo),我在認(rèn)真研究教材的基礎(chǔ)上,立足學(xué)生發(fā)展的宗旨,確定了本節(jié)課的教學(xué)重難點(diǎn).

  教學(xué)重點(diǎn):知道什么是方程、一元一次方程,找相等關(guān)系列方程.

  教學(xué)難點(diǎn):思維習(xí)慣的轉(zhuǎn)變,分析數(shù)量關(guān)系,找相等關(guān)系。

  二、教學(xué)策略:

  如何突出重點(diǎn),突破難點(diǎn),從而達(dá)到教學(xué)目標(biāo)的實(shí)現(xiàn)呢?在教學(xué)過(guò)程我運(yùn)用了如下教法與手段:

  1.生活引路,感知概念背景;

  2.比較方法,明確意義;

  3.感受過(guò)程,形成核心概念;

  4.運(yùn)用新知,鞏固方法;

  5.歸納總結(jié),鞏固發(fā)展.

  本節(jié)課利用多媒體教學(xué)平臺(tái),從學(xué)生熟悉的實(shí)際問(wèn)題開始,將實(shí)際問(wèn)題“數(shù)學(xué)化”建立方程模型.采用教師引導(dǎo),學(xué)生自主探索、觀察、歸納的教學(xué)方式。

  三、學(xué)情分析:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn)及學(xué)生的心理特征,在學(xué)法上,極力倡導(dǎo)了新課程的自主探究、合作交流的學(xué)習(xí)方法.通過(guò)對(duì)學(xué)生原有知識(shí)水平的分析,創(chuàng)設(shè)情境,使數(shù)學(xué)回到生活,鼓勵(lì)學(xué)生思考,探索情境中的所包含的數(shù)量關(guān)系,學(xué)生在經(jīng)歷“建立方程模型”這一數(shù)學(xué)化的過(guò)程后,理解學(xué)習(xí)方程和一元一次方程的意義,培養(yǎng)學(xué)生抽象概括等能力.

  四、教學(xué)過(guò)程:

  本節(jié)課的教學(xué)過(guò)程我設(shè)計(jì)了以下六個(gè)環(huán)節(jié):

  (一) 情景引入

  采用教材中的情景

  在這個(gè)環(huán)節(jié)中我提出了三個(gè)問(wèn)題:

  問(wèn)題1:從上圖中你能獲得哪些信息?

  問(wèn)題2:你會(huì)用算術(shù)方法求嗎?

  問(wèn)題3:你會(huì)用方程的方法解決這個(gè)問(wèn)題嗎?

  (二)學(xué)習(xí)新知

  在這個(gè)環(huán)節(jié)中,我首先提出一個(gè)問(wèn)題:“如果設(shè)中山市到深圳市的路程為·千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學(xué)生就會(huì)主動(dòng)結(jié)合圖形,根據(jù)在《整式的加減》中學(xué)到的知識(shí)解決問(wèn)題.

  通過(guò)上述思考過(guò)程,學(xué)生已經(jīng)初步了解到尋找已知量與未知量之間存在的相等關(guān)系是利用方程解決實(shí)際問(wèn)題的關(guān)鍵所在.

  然后我結(jié)合上面的過(guò)程簡(jiǎn)單歸納列方程解決實(shí)際問(wèn)題的步驟并給出方程的概念.

  解決實(shí)際問(wèn)題的步驟:(1)用字母表示問(wèn)題中的未知數(shù);(2)根據(jù)問(wèn)題中的相等關(guān)系,列出方程.(17世紀(jì)的法國(guó)數(shù)學(xué)家迪卡爾最早使用·,y,z等字母表示未知數(shù),而我國(guó)古代則用“天元、地元、人元、物元”等表示未知數(shù),而且要比西方早1000多年,這說(shuō)明我們中華民族是一個(gè)充滿智慧和才干的偉大民族.)

  在這里我介紹了字母表示未知數(shù)的文化背景,其目的就是在文化層面上讓學(xué)生進(jìn)一步理解數(shù)學(xué)、喜愛(ài)數(shù)學(xué),展示數(shù)學(xué)的文化魅力,這正是培養(yǎng)學(xué)生情感價(jià)值觀的體現(xiàn).

  方程的概念:含有未知數(shù)的等式叫方程.小學(xué)里已經(jīng)給出了方程的概念,這里可適當(dāng)處理.

  在這里我開始向?qū)W生滲透列方程解決實(shí)際問(wèn)題的思考程序.

  (三)討論交流

  討論1:比較列算式和列方程兩種方法的特點(diǎn).

  列算式:只用已知數(shù),表示計(jì)算程序,依據(jù)是間題中的數(shù)量關(guān)系;

  列方程:可用未知數(shù),表示相等關(guān)系,依據(jù)是問(wèn)題中的等量關(guān)系。

  通過(guò)討論,學(xué)生體會(huì)到了:用算術(shù)方法解題時(shí),列出的算式只能用已知數(shù),而列方程時(shí),方程中既含有已知數(shù),又含有用字母表示的未知數(shù),這就是說(shuō),在方程中未知數(shù)(字母)可以和已知數(shù)一起表示問(wèn)題中的數(shù)量關(guān)系.

  而且隨著學(xué)習(xí)的深入,學(xué)生會(huì)逐步體會(huì)到從算式到方程是數(shù)學(xué)的進(jìn)步。

  緊接著的思考讓全班學(xué)生參與學(xué)習(xí)的過(guò)程,從而進(jìn)一步地拓寬了學(xué)生的思維.

  討論2:對(duì)于上面的問(wèn)題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個(gè)相等關(guān)系?

  在這個(gè)討論活動(dòng)中,我采取了先小組合作交流后全班交流.

  通過(guò)交流后,學(xué)生中出現(xiàn)如下結(jié)果:

  從學(xué)生的分析所得,這兩種設(shè)未知數(shù)的方法就是在以后學(xué)習(xí)中將遇到的直接設(shè)元和間接設(shè)元兩種設(shè)元.

  要求出路程,只要解出方程中的·即可,我們?cè)谝院髱坠?jié)課中再來(lái)學(xué)習(xí).

  在這個(gè)環(huán)節(jié)里,問(wèn)題的開放有利于培養(yǎng)學(xué)生的發(fā)散思維。這樣安排的目的是使所有的學(xué)生都有獨(dú)立思考的時(shí)間和合作交流的時(shí)間。

  (四)初步應(yīng)用

  學(xué)生在小學(xué)已經(jīng)學(xué)過(guò)簡(jiǎn)易方程,通過(guò)以下的例題和練習(xí)可以回顧已經(jīng)學(xué)過(guò)的知識(shí),并為一元一次方程提供素材。

  1、例題:根據(jù)下列問(wèn)題,設(shè)未知數(shù)并列出方程:

  (1)用一根長(zhǎng)24㎝的鐵絲圍成一個(gè)正方形,正方形的邊長(zhǎng)是多少?

  (2)一臺(tái)計(jì)算機(jī)已使用1700小時(shí),預(yù)計(jì)每月再使用150小時(shí),經(jīng)過(guò)多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450小時(shí)?

  (3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個(gè)學(xué)校有多少學(xué)生?

  2、課堂練習(xí):這一組例題和課堂練習(xí)的設(shè)置,其目的是讓學(xué)生更進(jìn)一步加強(qiáng)列方程解決實(shí)際問(wèn)題的能力。

  (五)再探新知

  提取例題和練習(xí)中出現(xiàn)的方程請(qǐng)學(xué)生觀察方程它們有什么共同的特點(diǎn)?然后達(dá)成共識(shí):只含有一個(gè)未知數(shù);未知數(shù)的次數(shù)是1.

  在這個(gè)環(huán)節(jié)中,我引導(dǎo)學(xué)生觀察方程特點(diǎn),給出一元一次方程的概念

  教師總結(jié):只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.

  思考:下列式子中,哪些是一元一次方程?通過(guò)思考辨析,使學(xué)生鞏固一元一次方程的概念,把握住概念的本質(zhì).

  (六)課堂小結(jié)

  讓學(xué)生先歸納,然后教師補(bǔ)充方式進(jìn)行,主要圍繞以下問(wèn)題:

  本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?一元一次方程的三個(gè)特征是什么?從實(shí)際問(wèn)題中列出方程的步驟及關(guān)鍵是什么?

  五、課堂設(shè)計(jì)理念

  本節(jié)課著力體現(xiàn)以下幾個(gè)方面:

  1、突出問(wèn)題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問(wèn)題,使學(xué)生能圍繞問(wèn)題展開討思考、討論,進(jìn)行學(xué)習(xí)。

  2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過(guò)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過(guò)合作交流,得出問(wèn)題的不同解法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。

  3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問(wèn)題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。

  4、滲透建模思想。把實(shí)際問(wèn)題中的數(shù)量關(guān)系用方程形式表示出來(lái),就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問(wèn)題抽象出方程模型的能力。

  初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文四

  【第一部分】知識(shí)點(diǎn)分布

  1、 一元一次方程的解(重點(diǎn))

  2、 一元一次方程的應(yīng)用(難點(diǎn))

  3、 求解一元一次方程及其在實(shí)際問(wèn)題中的應(yīng)用(考點(diǎn))

  【第二部分】關(guān)于一元一次方程

  一、一元一次方程

  (1)含有未知數(shù)的等式是方程。

  (2)只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

  (3)分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實(shí)際問(wèn)題的一種方法。

  (4)列方程解決實(shí)際問(wèn)題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

  (5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

  (6)求方程的解的過(guò)程,叫做解方程。

  二、等式的性質(zhì)

  (1)用等號(hào)“=”表示相等關(guān)系的式子叫做等式。

  (2)等式的性質(zhì)1:等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性質(zhì)2:等式兩邊乘同一個(gè)數(shù),或除以一個(gè)不為0的數(shù),結(jié)果仍相等。

  【第一部分】知識(shí)點(diǎn)分布

  1、 一元一次方程的解(重點(diǎn))

  2、 一元一次方程的應(yīng)用(難點(diǎn))

  3、 求解一元一次方程及其在實(shí)際問(wèn)題中的應(yīng)用(考點(diǎn))

  【第二部分】關(guān)于一元一次方程

  一、一元一次方程

  (1)含有未知數(shù)的等式是方程。

  (2)只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1的方程叫做一元一次方程。

  (3)分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實(shí)際問(wèn)題的一種方法。

  (4)列方程解決實(shí)際問(wèn)題的步驟:①設(shè)未知數(shù);②找等量關(guān)系列方程。

  (5)求出使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解。

  (6)求方程的解的過(guò)程,叫做解方程。

  二、等式的性質(zhì)

  (1)用等號(hào)“=”表示相等關(guān)系的式子叫做等式。

  (2)等式的性質(zhì)1:等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性質(zhì)2:等式兩邊乘同一個(gè)數(shù),或除以一個(gè)不為0的數(shù),結(jié)果仍相等。

  如果a=b,那么ac=bc;

  如果a=b且c≠0,那么

  (4)運(yùn)用等式的性質(zhì)時(shí)要注意三點(diǎn):

  ①等式兩邊都要參加運(yùn)算,并且是作同一種運(yùn)算;

  ②等式兩邊加或減,乘或除以的數(shù)一定是同一個(gè)數(shù)或同一個(gè)式子;

  ③等式兩邊不能都除以0,即0不能作除數(shù)或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同類項(xiàng)與移項(xiàng)

  (1)合并同類項(xiàng)的依據(jù):乘法分配律。合并同類項(xiàng)的作用:是一種恒等變形,起到“化簡(jiǎn)”的作用,它使方程變得簡(jiǎn)單,更接近 ·=a(a 常數(shù))的形式。

  (2)把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

  (3)移項(xiàng)依據(jù):等式的性質(zhì)1.移項(xiàng)的作用:通過(guò)移項(xiàng),使含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。

  2、解一元一次方程——去括號(hào)與去分母

  (1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

  (2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

  (3)工作總量=工作效率×工作時(shí)間。

  (4)工作量=人均效率×人數(shù)×時(shí)間。

  四、實(shí)際問(wèn)題與一元一次方程

  (1)售價(jià)指商品賣出去時(shí)的的實(shí)際售價(jià)。

  (2)進(jìn)價(jià)指的是商家從批發(fā)部或廠家批發(fā)來(lái)的價(jià)格。進(jìn)價(jià)指商品的買入價(jià),也稱成本價(jià)。

  (3)標(biāo)價(jià)指的是商家所標(biāo)出的每件物品的原價(jià)。它與售價(jià)不同,它指的是原價(jià)。

  (4)打折指的是原價(jià)乘以十分之幾或百分之幾,則稱將標(biāo)價(jià)打了幾折。

  (5)盈虧問(wèn)題:利潤(rùn)=售價(jià)-成本; 售價(jià)=進(jìn)價(jià)+利潤(rùn);售價(jià)=進(jìn)價(jià)+進(jìn)價(jià)×利潤(rùn)率;

  (6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

  (7)應(yīng)用:行程問(wèn)題:路程=時(shí)間×速度;

  工程問(wèn)題:工作總量=工作效率×時(shí)間;

  儲(chǔ)蓄利潤(rùn)問(wèn)題:利息=本金×利率×時(shí)間;

  本息和=本金+利息。

  (4)運(yùn)用等式的性質(zhì)時(shí)要注意三點(diǎn):

 ?、俚仁絻蛇叾家獏⒓舆\(yùn)算,并且是作同一種運(yùn)算;

 ?、诘仁絻蛇吋踊驕p,乘或除以的數(shù)一定是同一個(gè)數(shù)或同一個(gè)式子;

 ?、鄣仁絻蛇叢荒芏汲?,即0不能作除數(shù)或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同類項(xiàng)與移項(xiàng)

  (1)合并同類項(xiàng)的依據(jù):乘法分配律。合并同類項(xiàng)的作用:是一種恒等變形,起到“化簡(jiǎn)”的作用,它使方程變得簡(jiǎn)單,更接近 ·=a(a 常數(shù))的形式。

  (2)把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

  (3)移項(xiàng)依據(jù):等式的性質(zhì)1.移項(xiàng)的作用:通過(guò)移項(xiàng),使含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于·=a(a是常數(shù)) 的形式。

  2、解一元一次方程——去括號(hào)與去分母

  (1)方程兩邊都乘以各分母的最小公倍數(shù),使方程不在含有分母,這樣的變形叫做去分母。

  (2)順流速度=靜水速度+水流速度;逆流速度=靜水速度-水流速度。

  (3)工作總量=工作效率×工作時(shí)間。

  (4)工作量=人均效率×人數(shù)×時(shí)間。

  四、實(shí)際問(wèn)題與一元一次方程

  (1)售價(jià)指商品賣出去時(shí)的的實(shí)際售價(jià)。

  (2)進(jìn)價(jià)指的是商家從批發(fā)部或廠家批發(fā)來(lái)的價(jià)格。進(jìn)價(jià)指商品的買入價(jià),也稱成本價(jià)。

  (3)標(biāo)價(jià)指的是商家所標(biāo)出的每件物品的原價(jià)。它與售價(jià)不同,它指的是原價(jià)。

  (4)打折指的是原價(jià)乘以十分之幾或百分之幾,則稱將標(biāo)價(jià)打了幾折。

  (5)盈虧問(wèn)題:利潤(rùn)=售價(jià)-成本; 售價(jià)=進(jìn)價(jià)+利潤(rùn);售價(jià)=進(jìn)價(jià)+進(jìn)價(jià)×利潤(rùn)率;

  (6)產(chǎn)油量=油菜籽畝產(chǎn)量×含油率×種植面積。

  (7)應(yīng)用:行程問(wèn)題:路程=時(shí)間×速度;

  工程問(wèn)題:工作總量=工作效率×時(shí)間;

  儲(chǔ)蓄利潤(rùn)問(wèn)題:利息=本金×利率×時(shí)間;

  本息和=本金+利息。

  初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)范文五

  一、教學(xué)目標(biāo)

  (一).知識(shí)與技能

  會(huì)利用合并同類項(xiàng)解一元一次方程.

  (二).過(guò)程與方法

  通過(guò)對(duì)實(shí)例的分析,體會(huì)一元一次方程作為實(shí)際問(wèn)題的數(shù)學(xué)模型的作用.

  (三).情感態(tài)度與價(jià)值觀

  開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.

  二、重、難點(diǎn)與關(guān)鍵

  (一).重點(diǎn):會(huì)列一元一次方程解決實(shí)際問(wèn)題,并會(huì)合并同類項(xiàng)解一元一次方程.

  (二).難點(diǎn):會(huì)列一元一次方程解決實(shí)際問(wèn)題.

  (三).關(guān)鍵:抓住實(shí)際問(wèn)題中的數(shù)量關(guān)系建立方程模型.

  三、教學(xué)過(guò)程

  (一)、復(fù)習(xí)提問(wèn)

  1.敘述等式的兩條性質(zhì).

  2.解方程:4(·- )=2.

  解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:

  ·- =

  兩邊都加 ,得·= .

  解法2:利用乘法分配律,去掉括號(hào),得:

  4·- =2

  兩邊同加 ,得4·=

  兩邊同除以4,得·= .

  (二)、新授

  公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點(diǎn)論述怎樣解方程.這本書的拉丁文譯本取名為《對(duì)消與還原》.對(duì)消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個(gè)問(wèn)題.

  問(wèn)題1:某校三年級(jí)共購(gòu)買計(jì)算機(jī)140臺(tái),去年購(gòu)買數(shù)量是前年的2倍,今年購(gòu)買數(shù)量又是去年的2倍,前年這個(gè)學(xué)校購(gòu)買了多少臺(tái)計(jì)算機(jī)?

  分析:設(shè)前年這個(gè)學(xué)校購(gòu)買了·臺(tái)計(jì)算機(jī),已知去年購(gòu)買數(shù)量是前年的2倍,那么去年購(gòu)買2·臺(tái),又知今年購(gòu)買數(shù)量是去年的2倍,則今年購(gòu)買了22·(即4·)臺(tái).

  題目中的相等關(guān)系為:三年共購(gòu)買計(jì)算機(jī)140臺(tái),即

  前年購(gòu)買量+去年購(gòu)買量+今年購(gòu)買量=140

  列方程:·+2·+4·=140

  如何解這個(gè)方程呢?

  2·表示2·,4·表示4·,·表示1·.

  根據(jù)分配律,·+2·+4·=(1+2+4)·=7·.

  這樣就可以把含·的項(xiàng)合并為一項(xiàng),合并時(shí)要注意·的系數(shù)是1,不是0.

  下面的框圖表示了解這個(gè)方程的具體過(guò)程:

  ·+2·+4·=140

  合并

  7·=140

  系數(shù)化為1

  ·=20

  由上可知,前年這個(gè)學(xué)校購(gòu)買了20臺(tái)計(jì)算機(jī).

  上面解方程中合并起了化簡(jiǎn)作用,把含有未知數(shù)的項(xiàng)合并為一項(xiàng),從而達(dá)到把方程轉(zhuǎn)化為a·=b的形式,其中a、b是常數(shù).

  例:某班學(xué)生共60分,外出參加種樹活動(dòng),根據(jù)任何的不同,要分成三個(gè)小組且使甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,求各小組人數(shù).

  分析:這里甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,就是說(shuō)把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為·人.

  問(wèn):本題中相等關(guān)系是什么?

  答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.

  解:設(shè)每一份為·人,則甲組人數(shù)為2·人,乙組人數(shù)為3·人,丙組為5·人,列方程:

  2·+3·+5·=60

  合并,得10·=60

  系數(shù)化為1,得·=6

  所以2·=12,3·=18,5·=30

  答:甲組12人,乙組18人,丙組30人.

  請(qǐng)同學(xué)們檢驗(yàn)一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.

  (三)、鞏固練習(xí)

  1.課本第89頁(yè)練習(xí).

  (1)·=3.

  (2)可以先合并,也可以先把方程兩邊同乘以2.

  具體解法如下:

  解法1:合并,得( + )·=7

  即 2·=7

  系數(shù)化為1,得·=

  解法2:兩邊同乘以2,得·+3·=14

  合并,得 4·=14

  系數(shù)化為1,得 ·=

  (3)合并,得-2.5·=10

  系數(shù)化為1,得·=-4

  2.補(bǔ)充練習(xí).

  (1)足球的表面是由若干個(gè)黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個(gè)足球的表面一共有32個(gè)皮塊,黑色皮塊和白色皮塊各有多少?

  (2)某學(xué)生讀一本書,第一天讀了全書的多2頁(yè),第二天讀了全書的少1頁(yè),還剩23頁(yè)沒(méi)讀,問(wèn)全書共有多少頁(yè)?(設(shè)未知數(shù),列方程,不求解)

  解:(1)設(shè)每份為·個(gè),則黑色皮塊有3·個(gè),白色皮塊有5·個(gè).

  列方程 3·+2·=32

  合并,得 8·=32

  系數(shù)化為1,得 ·=4

  黑色皮塊為43=12(個(gè)),白色皮塊有54=20(個(gè)).

  (2)設(shè)全書共有·頁(yè),那么第一天讀了( ·+2)頁(yè),第二天讀了( ·-1)頁(yè).

  本問(wèn)題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁(yè)=全書頁(yè)數(shù).

  列方程: ·+2+ ·-1+23=·.

  四、課堂小結(jié)

  初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實(shí)際問(wèn)題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點(diǎn),本節(jié)課的兩個(gè)問(wèn)題的相等關(guān)系都是:總量=各部分量的和.這是一個(gè)基本的相等關(guān)系.

  合并就是把類型相同的項(xiàng)系數(shù)相加合并為一項(xiàng),也就是逆用乘法分配律,合并時(shí),注意·或-·的系數(shù)分別是1,-1,而不是0.

  五、作業(yè)布置

  1.課本第93頁(yè)習(xí)題3.2第1、3(1)、(2)、4、5題.

  2.選用課時(shí)作業(yè)設(shè)計(jì).

  合并同類項(xiàng)習(xí)題課(第2課時(shí))

  一、解方程.

  1.(1)3·+3-2·=7; (2) ·+ ·=3;

  (3)5·-2-7·=8; (4) y-3-5y= ;

  (5) - =5; (6)0.6·- ·-3=0.

  二、解答題.

  2.育紅小學(xué)現(xiàn)有學(xué)生320人,比1995年學(xué)生人數(shù)的 少150人,問(wèn)育紅小學(xué)1995年學(xué)生人數(shù)是多少?

  3.甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開出,A車每小時(shí)行駛60千米,B車每小時(shí)行駛48千米.

  (1)兩車同時(shí)出發(fā),相向而行,出發(fā)多少小時(shí)兩車相遇?

  (2)兩車相向而行,A車提前半小時(shí)出發(fā),則在B車出發(fā)后多少小時(shí)兩車相遇?相遇地點(diǎn)距離甲地多遠(yuǎn)?

  4.甲、乙二人從A地去B地,甲步行每小時(shí)走4千米,乙騎車每小時(shí)比甲多走8千米,甲出發(fā)半小時(shí)后乙出發(fā),恰好二人同時(shí)到達(dá)B地,求A、B兩地之間的距離.

  5.一條環(huán)形跑道長(zhǎng)400米,甲練習(xí)騎自行車,平均每分鐘行駛550米;乙練習(xí)長(zhǎng)跑,平均每分鐘跑250米,兩人同時(shí)、同地、同向出發(fā),經(jīng)過(guò)多少時(shí)間,兩人首次相遇?

  答案:

  一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11

  二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為·人,列方程320= ·-150.

  3.(1)4 小時(shí),設(shè)出發(fā)后·小時(shí)相遇,列方程60·+48·=460.

  (2)3 小時(shí),設(shè)B車開出后·小時(shí)兩車相遇,列方程60 +60·+48·=460.

  4.3千米,設(shè)A、B兩地間的距離為·千米, - = .

  5.1 分鐘,設(shè)經(jīng)過(guò)·分鐘兩人首次相遇,列方程550·-250·=400.

  解一元一次方程

  ──移項(xiàng)(第3課時(shí))

  一、教學(xué)內(nèi)容

  課本第89頁(yè)至第91頁(yè).

  二、教學(xué)目標(biāo)

  (一).知識(shí)與技能

  理解移項(xiàng)法,并知道移項(xiàng)法的依據(jù),會(huì)用移項(xiàng)法則解方程.

  (二).情感態(tài)度與價(jià)值觀

  鼓勵(lì)學(xué)生自主探索與合作交流,發(fā)展思維策略,體會(huì)方程的應(yīng)用價(jià)值.

  三、重、難點(diǎn)與關(guān)鍵

  (一).重點(diǎn):運(yùn)用方程解決實(shí)際問(wèn)題,會(huì)用移項(xiàng)法則解方程.方程的各項(xiàng)應(yīng)包括前面的符號(hào)

  (二).難點(diǎn):對(duì)立相等關(guān)系.

  (三).關(guān)鍵:理解移項(xiàng)法則的依據(jù),以及尋找問(wèn)題中的等量關(guān)系.

  四、教學(xué)過(guò)程 (一)、復(fù)習(xí)提問(wèn)

  1.運(yùn)用方程解決實(shí)際問(wèn)題的步驟是什么?

  2.解方程: + =10.

  (二)、新授

  問(wèn)題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個(gè)班有多少學(xué)生?

  分析:設(shè)這個(gè)班有·名學(xué)生,根據(jù)第一種分法,分析已知量和未知量間的關(guān)系.

  1.每人分3本,那么共分出多少本?(3·本)

  2.共分出3·本和剩余的20本,可知道什么?

  答:這批書共有(3·+20)本.

  根據(jù)第二種分法,分析已知量與未知量之間的關(guān)系.

  3.每人分4本,那么需要分出多少本?(4·本)

  4.需要分出4·本和還缺少25本那么這批書共有多少本?

  答:這批書共有(4·-25)本.

  這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可以作為列方程的依據(jù)?

  這批書的總數(shù)是一個(gè)定值(不變量)表示它的兩個(gè)式子應(yīng)相等.

  根據(jù)這一相等關(guān)系,列方程:

  3·+20=4·-25

  本題還可以畫示意圖,幫助我們分析:

  從示意圖中容易得到這批書的總數(shù)與分出書、剩下書的關(guān)系是:

  這批書的總數(shù)=3·+30

  這批書的總數(shù)與需要分出的書的數(shù)量、還缺少書的數(shù)量關(guān)系是:

  這批書的總數(shù)=4·-25

  根據(jù)兩種分法,這批書的總數(shù)是相等的.

  所以,列方程3·+20=4·-25.

  注意變化中的不變量,尋找隱含的相等關(guān)系,從本題列方程的過(guò)程,可以發(fā)現(xiàn):表示同一個(gè)量的兩個(gè)不同式子相等.

  思考:方程3·+20=4·-25的兩邊都含有·的項(xiàng)(3·與4·),也都含有不含字母的常數(shù)項(xiàng)(20與-25)怎樣才能使它轉(zhuǎn)化為·=a(常數(shù))的形式呢?

  要使方程右邊不含·的項(xiàng),根據(jù)等式性質(zhì)1,兩邊都減去4·,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項(xiàng)20,即

  3·+20 -4·-20 =4·-25 -4·-20

  即 3·-4·=-25-20

  將它與原來(lái)方程比較,相當(dāng)于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4·變?yōu)?4·后移到左邊.

  像上面那樣,把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng).

  方程中的任何一項(xiàng)都可以在改變符號(hào)后,從方程的一邊移到另一邊,即可以把方程等號(hào)右邊的項(xiàng)改變符號(hào)后移到等號(hào)的左邊,也可以把方程左邊的項(xiàng)改變符號(hào)后移到方程的右邊,注意要先變號(hào)后移項(xiàng),別忘了變號(hào).

  下面的框圖表示了解這個(gè)方程的具體過(guò)程.

  3·+20=4·-25

  移項(xiàng)

  3·-4·=-25-20

  合并

  -·=-45

  系數(shù)化為1

  ·=46

  由此可知這個(gè)班共有45個(gè)學(xué)生.

  思考:上面解方程中移項(xiàng)起了什么作用?

  答:移項(xiàng)使方程中含·的項(xiàng)歸到方程的同一邊(左邊),不含·的項(xiàng)即常數(shù)項(xiàng)歸到方程的另一邊(右邊),這樣就可以通過(guò)合并把方程轉(zhuǎn)化為·=a形式.

  在解方程時(shí),要弄清什么時(shí)候要移項(xiàng),移哪些項(xiàng),目的是什么?

  解方程時(shí)經(jīng)常要合并和移項(xiàng),前面提到的古老的代數(shù)書中的對(duì)消和還原,指的就是合并和移項(xiàng).

  如果把上面的問(wèn)題2的條件不變,這個(gè)班有多少學(xué)生改為這批書有多少本?你會(huì)解嗎?試試看.

  解法1:從原問(wèn)題的解答中,已求的這個(gè)班有45個(gè)學(xué)生,只要把·=45代入3·+20(或4·-25)就可以求得這批書的總數(shù)為:

  345+20=135+20=155(本)

  解法2:如果不先求學(xué)生數(shù),直接設(shè)這批書共有·本,又如何布列方程?這時(shí)該用哪個(gè)相等關(guān)系列方程呢?

  這批書共有·本,余下20本,共分出(·-20)本,每人分3本,可以分給 人,即這個(gè)班共有 人.

  這批書有·本,每人分4本,還缺少25本,共需要(·+25)本,可以分給 人,即這個(gè)班共有 人.

  這個(gè)班的人數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,根據(jù)這個(gè)相等關(guān)系列方程.

  = (你會(huì)解這個(gè)方程嗎?)

  即 - = +

  移項(xiàng),得 - = +

  合并,得 =

  系數(shù)化為1,得·=155.

  答:這批書共有155本.

  (三)、鞏固練習(xí)

  1.課本第91頁(yè)練習(xí).

  (1)解:移項(xiàng),得6·-4·=-5+7

  合并,得 2·=2

  系數(shù)化為1,得·=1

  (2)解:移項(xiàng),得 ·- ·=6

  合并,得- ·=6

  系數(shù)化為1,得·=-24

  2.補(bǔ)充練習(xí).

  下列移項(xiàng)對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?應(yīng)當(dāng)怎樣改正?

  (1)從3·+6=0得3·=6;

  (2)從2·=·-1得到2·-·=1;

  (3)從2+·-3=2·+1得到2-3-1=2·-·.

  解:(1)錯(cuò),移項(xiàng)忘了要變號(hào),應(yīng)改為3·=-6.

  (2)錯(cuò).原方程中的-1仍然在方程右邊,并沒(méi)有移項(xiàng),所以不要變號(hào),應(yīng)改為2·-·-=-1.

  (3)正確.

  四、課堂小結(jié)

  1.列一元一次方程解決實(shí)際問(wèn)題的關(guān)鍵是審題、讀懂題意和找相等關(guān)系,今天解決的這個(gè)問(wèn)題的相等關(guān)系不明顯,隱含在問(wèn)題中,表示同一個(gè)量的兩個(gè)式子是相等.這個(gè)相等關(guān)系可以作列方程的依據(jù).

  2.正確理解移項(xiàng)法則,移項(xiàng)中常犯的錯(cuò)誤是忘記變號(hào),還要注意移項(xiàng)與在方程的一邊交換兩項(xiàng)的位置有本質(zhì)區(qū)別,移項(xiàng)的依據(jù)是等式性質(zhì),在方程的一邊交換兩項(xiàng)的位置是根據(jù)交換律.

  五、作業(yè)布置

  1.課本第93頁(yè)至第94頁(yè)習(xí)題3.2第2、3(3)(4)、6、7、8題.

  2.選用課時(shí)作業(yè)設(shè)計(jì).

  移項(xiàng)習(xí)題課(第4課時(shí))

  一、填空題.

  1.在方程的兩邊加上或減去同一項(xiàng),相當(dāng)于把原方程中的項(xiàng)______后,從方程的一邊移到另一邊,這種變形叫做________,其依據(jù)是________,移項(xiàng)要注意_____.

  2.在方程的一邊交換兩項(xiàng)的位置______改變項(xiàng)的符號(hào),而移項(xiàng)______改變符號(hào).

  3.解方程·+21=36得·=________;由10·-3=9得·=______.

  二、判斷題.(對(duì)的打,錯(cuò)的打)

  4.移項(xiàng)就是把方程中的某一項(xiàng)移到等號(hào)的另一邊.( )

  5.從6·=1,移項(xiàng),得·=1-6,·=-5. ( )

  6.由方程-4+·=7移項(xiàng)得·=7-4. ( )

  三、解方程.

  7.(1)8=7-2y; (2) = - ;

  (3)5·-2=7·+8; (4)1- ·=3·+ ;

  (5)2·- =- +2; (6)- ·+6=4·+1;

  (7) -·=0.5·-3.

  四、解答題.

  8.設(shè)m=3·-2,n=-2·+3,當(dāng)·為何值時(shí)m=n?

  9.甲糧倉(cāng)存糧1000噸,乙糧倉(cāng)存糧798噸,現(xiàn)要從兩個(gè)糧倉(cāng)中運(yùn)走212噸糧食,使兩倉(cāng)庫(kù)剩余的糧食數(shù)量相等,那么應(yīng)從這兩個(gè)糧倉(cāng)各運(yùn)出多少噸?

  答案:

  一、1.合并 移項(xiàng) 合并同類項(xiàng) 變號(hào) 2.不 要 3.15 1.2

  二、4. 5. 6.

  三、7.(1)y=- (2)·= (3)·=-5 (4)·=-

  (5)·=1 (6)·= (7)·=3

  四、8.·=1 9.207,5,設(shè)從甲糧倉(cāng)運(yùn)出·噸,1000-·=798-(212-·)

292104