學習啦 > 實用范文 > 個人寫作 > 反思 > 數(shù)學解簡易方程教學反思

數(shù)學解簡易方程教學反思

時間: 志藝942 分享

數(shù)學解簡易方程教學反思

  數(shù)學課程標準(實驗稿)改變了小學階段解方程方法的教學要求,采用了等式的性質(zhì)來教學解方程。下面是學習啦小編為大家收集的數(shù)學解簡易方程教學反思,望大家喜歡。
 
  數(shù)學解簡易方程教學反思范文一
 
  新課程的改革,使得小學的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑
 
  1、從教材的編排上,整體難度下降,有意避開了,形如:45-X=23等類型的題目。把用等式解決的方法單一化了。在實際教學中我們要求學生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)X前面是減號或除號的方程題了,學生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學生不會列出X在后面的方程,我們更頭痛于學生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學生來說,我們會讓他們嘗試接受--解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。
 
  2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。要教他們列方程時怎么避免X前面是除號或減號的方程的出現(xiàn)等等。
 
  數(shù)學解簡易方程教學反思范文二
 
  數(shù)學課程標準(實驗稿)改變了小學階段解方程方法的教學要求,采用了等式的性質(zhì)來教學解方程?,F(xiàn)將解方程的新舊方法舉例如下:
 
  老方法:
 
  x + 4 = 20
 
  x = 20-4
 
  依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。
 
  新方法:
 
  x + 4 = 20
 
  x + 4-4=20-4
 
  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
 
  改革的原因(摘自教學參考書):
 
  新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。因此,現(xiàn)在根據(jù)《標準》的要求,從小學起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。
 
  從這我們不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。
 
  那么,小學生學這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學過程中真的出現(xiàn)了問題 。
 
  1.無法解如a-x=b和a÷x=b此類的方程
 
  新教材認為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時減去(加上)a;解如ax=b與x÷a=b一類的方程,都可以歸結(jié)為等式兩邊同時除以(乘上)a。這就是所謂“相比原來方法,思路更為統(tǒng)一”的優(yōu)越性。然而,它有一個相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小學生還沒有學習正負數(shù)的四則運算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而a÷x=b的方程,因為其本質(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學階段學習。
 
  我認為為了要運用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認為并不影響學生列方程解決實際問題。因為當需要列出形如a-x=b或a÷x=b的方程時,總是要求學生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認為,這樣的處理方法,有時更 會無法避免地直接和方程思想發(fā)生矛盾。
 
  如“3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法應(yīng)是“設(shè)桃子每千克X元”,從順向思考,列出方程為“2.5×3-5X=0.5”。然而,按新教材的編排,因為學生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成“5X+0.5=2.5×3”之類的方程。又如:課本第62頁中的“爸爸比小明大28歲,小明Х歲,爸爸40歲。”很多學生根據(jù)“爸爸比小明大28歲”列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。
 
  很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進式子,使考慮問題更加直接自然。為實現(xiàn)這個目標,很重要的一點,就是列式時應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實上,如果學生能夠列成“5X+0.5=2.5×3”“ Х+28=40”那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時,用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學生認識方程的優(yōu)越性呢? 
 
  我們不難看出,根據(jù)現(xiàn)實情境列方程解決問題,X當作減數(shù)、當作除數(shù),應(yīng)當是很常見、很必要的現(xiàn)象。要學生學會解這些方程,是正常的教學要求,這是不應(yīng)該回避的,否則,我們的教學就會顯得片面和狹隘。
 
  2.解方程的書寫過程太繁瑣
 
  教材要求,在學生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。
 
  因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。
 
  從這兩個方面來看,小學里學習等式的基本性質(zhì),并運用它來解方程,在實際操作中,也存在許多的現(xiàn)實問題。那么,如果說用算術(shù)思路解方程對初中學習有負遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?
 
  數(shù)學解簡易方程教學反思范文三
 
  學生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對于解比較簡單的方程,學生并不陌生。
 
  比如:x+4=7學生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強勢效應(yīng),促進良好的書寫習慣的形成。對于稍復(fù)雜的方程要放手讓學生去試一試,這樣就可以使探究式課堂教學進入一個理想的境界。
 
  不難看出,學生經(jīng)歷了把運算符號“+”看錯成了“-”,又自行改正的過程,在這一過程中學生體驗到了緊張、焦急、期待,成功的感覺,這時的數(shù)學學習已進入了學生的內(nèi)心,并成為學生生命成長的過程,真正落實了《數(shù)學課程標準》中“在數(shù)學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心”的目標,在這個思維過程中,學生獲得了情感體驗和發(fā)現(xiàn)錯誤又自己解決問題的機會。老師以人為本,充分尊重學生,也體現(xiàn)在耐心的等待,熱切的期待的教學行為上,老師的教學行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學生感到這不僅是數(shù)學學習的過程,更是一種生命交往的過程,學生有了很安全的心理空間,不然,他怎么會對老師說“老師,我太緊張了”,這是學生對老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學生,學生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

數(shù)學解簡易方程教學反思相關(guān)文章:

1.解簡易方程的教學設(shè)計和教學反思

2.簡易方程教學反思

3.簡易方程教學反思范文【三篇】

4.圓的標準方程數(shù)學教案及反思

5.簡易方程教學反思發(fā)范文【匯總】

 
2084094