初中數(shù)學(xué)應(yīng)該怎么學(xué)才好
初中的同學(xué)們要想把初中數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進入數(shù)學(xué)的廣闊的天地中去。一起來看看初中數(shù)學(xué)的學(xué)習(xí)方法吧!
初中數(shù)學(xué)學(xué)習(xí)方法
1.突出一個“勤”字(克服一個“惰”字)
數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”
“勤能補拙是良訓(xùn),一分辛勞一分才:
我們在學(xué)習(xí)的時候要突出一個勤字,克服一個“懶”字,怎么突出“勤”字
“聰”:怎么個勤法,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息)
“口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息) 那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手”
“手勤”(動手多實踐,不僅光做題,做課件,做模型)
這樣的人聰明不聰明?
最大的提高學(xué)習(xí)效率,首先要做到—— 上課認真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識
2.學(xué)好初中數(shù)學(xué)還有兩個要點,要狠抓兩個要點:
學(xué)好數(shù)學(xué),一要(動手),二要(動腦)。
動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個為什么
動手就是多實踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)
同學(xué)就是“題不離手”,這兩個要點大家要記住。
“動腦又動手,才能最大地發(fā)揮大腦的效率”
3.做到“三個一遍”
大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?
培根(18-19世紀英國的哲學(xué)家)——“知識就是力量”
“重復(fù)是學(xué)習(xí)之母”
如何重復(fù),我給你們解釋一下:
“上課要認真聽一遍,動手推一遍,想一遍”
“下課 看 ”
“考試前 ”
4.重視“四個依據(jù)”
讀好一本教科書——它是教學(xué)、中考的主要依據(jù);
記好一本筆記 ——它是教師多年經(jīng)驗的結(jié)晶;
做好做凈一本習(xí)題集——它是使知識拓寬;
記好一本心得筆記,最好每人自己準備一本錯題集
學(xué)好初中數(shù)學(xué)的關(guān)鍵
一、課內(nèi)重視聽講,課后及時復(fù)習(xí)
初中數(shù)學(xué)的能力培養(yǎng)主要在課堂上進行,所以要特別重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與老師講的有那些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,對于有些題目由于自己的思路不清,一時難以解出,一定要讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二、適當多做題,并養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好初中數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要以基礎(chǔ)題目入手,以課上的題目為準,提高自己的分析解決能力,掌握一般的解題思路。對于一些易錯題,可備有錯題集,寫出自己的解題思路、正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正。在平時養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵的時候,你所表現(xiàn)的解題習(xí)慣與平時解題無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
三、調(diào)整心態(tài)、正確對待考試
首先,把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上。因為每次考試占絕大部分的是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納,調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮 ,誰也不能把我打垮的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題,要有十二分的把握拿滿分;對于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發(fā)揮。
初中數(shù)學(xué)知識記憶方法
歸類記憶法就是根據(jù)識記材料的性質(zhì)、特征及其內(nèi)在聯(lián)系,進行歸納分類,以便幫助學(xué)生記憶大量的知識。比如,學(xué)完計量單位后,可以把學(xué)過的所有內(nèi)容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復(fù)雜的事物系統(tǒng)化、條理化,易于記憶。
歌訣記憶法就是把要記憶的數(shù)學(xué)知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準頂點,零線對著一邊,另一邊看度數(shù)。”再如,小數(shù)點位置移動引起數(shù)的大小變化,“小數(shù)點請你跟我走,走路先要找準‘左’和‘右’;橫撇帶口是個you,擴大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤。”采用這種方法來記憶,學(xué)生不僅喜歡記,而且記得牢。
規(guī)律記憶法。
即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法?;ê途鄯ㄊ腔ツ媛?lián)系,即高級單位的數(shù)值×進率=低級單位的數(shù)值,低級單位的數(shù)值÷進率=高級單位的數(shù)值。掌握了這兩條規(guī)律,化聚問題就迎刃而解了。規(guī)律記憶,需要學(xué)生開動腦筋對所學(xué)的有關(guān)材料進行加工和組織,因而記憶牢固。
列表記憶法就是把某些容易混淆的識記材料列成表格,達到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個概念的區(qū)別,就可列成表來幫助學(xué)生記憶。
重點記憶法隨著年齡的增長,所學(xué)的數(shù)學(xué)知識也越來越多,學(xué)生要想全面記住,既浪費時間且記憶效果不佳。因此,要讓學(xué)生學(xué)會記憶重點內(nèi)容,學(xué)生在記住了重點內(nèi)容的基礎(chǔ)上,再通過推導(dǎo)、聯(lián)想等方法便可記住其他內(nèi)容了。比如,學(xué)習(xí)常見的數(shù)量關(guān)系:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關(guān)系中只要記住了第一個數(shù)量關(guān)系,后面兩個數(shù)量關(guān)系就可根據(jù)乘法和除法的關(guān)系推導(dǎo)出來。這樣去記,減輕了學(xué)生記憶的負擔,提高了記憶的效率。
聯(lián)想記憶法就是通過一件熟悉的事物想到與它有聯(lián)系的另一件事物來進行記憶。
初中數(shù)學(xué)常用的解題方法
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復(fù)蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
學(xué)好初中數(shù)學(xué)的注意事項
1、全面復(fù)習(xí),把書讀薄
全面復(fù)習(xí)不是生記硬背所有的知識,相反,是要抓住問題的實質(zhì)和各內(nèi)容各方法的本質(zhì)聯(lián)系,把要記的東西縮小到最小程度,(要努力使自已理解所學(xué)知識,多抓住問題的聯(lián)系,少記一些死知識),而且,不記則已,記住了就要牢靠,事實證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎(chǔ)上,運用它們的聯(lián)系而得到。這就是全面復(fù)習(xí)的含義。
2、突出重點,精益求精
在考試大綱的要求中,對內(nèi)容有理解,了解,知道三個層次的要求;對方法有掌,會(能)兩個層次的要求,一般地說,要求理解的內(nèi)容,要求掌握的方法,是考試的重點。在歷年考試中,這方面考題出現(xiàn)的概率較大;在同一份試卷中,這方面試題所占有的分數(shù)也較多。"猜題"的人,往往要在這方面下功夫。一般說來,也確能猜出幾分來。但遇到綜合題,這些題在主要內(nèi)容中含有次要內(nèi)容。這時,"猜題"便行不通了。我們講的突出重點,不僅要在主要內(nèi)容和方法上多下功夫,更重要的是要去尋找重點內(nèi)容與次要內(nèi)容間的聯(lián)系,以主帶次,用重點內(nèi)容擔挈整個內(nèi)容。主要內(nèi)容理解透了,其它的內(nèi)容和方法迎刃而解。即抓出主要內(nèi)容不是放棄次要內(nèi)容而孤立主要內(nèi)容,而是從分析各內(nèi)容的聯(lián)系,從比較中自然地突出主要內(nèi)容。
3、基本訓(xùn)練反復(fù)進行
學(xué)習(xí)數(shù)學(xué),要做一定數(shù)量的題,把基本功練熟練透,但我們不主張"題海"戰(zhàn)術(shù),而是提倡精練,即反復(fù)做一些典型的題,做到一題多解,一題多變。要訓(xùn)練抽象思維能力,對些基本定理的證明,基本公式的推導(dǎo),以及一些基本練習(xí)題,要作到不用書寫,就象棋手下"盲棋"一樣,只需用腦子默想,即能得到正確答案。這就是我們在常言中提到的,在20分鐘內(nèi)完成10道客觀題。其中有些是不用動筆,一眼就能作出答案的題,這樣才叫訓(xùn)練有素,"熟能生巧",基本功扎實的人,遇到難題辦法也多,不易被難倒。相反,作練習(xí)時,眼高手低,總找難題作,結(jié)果,上了考場,遇到與自己曾經(jīng)作過的類似的題目都有可能不會;不少考生把會作的題算錯了,歸為粗心大意,確實,人會有粗心的,但基本功扎實的人,出了錯立即會發(fā)現(xiàn),很少會"粗心"地出錯。
猜你喜歡:
2.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)