學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 學(xué)習(xí)態(tài)度 > 怎么正確有效的學(xué)好初二數(shù)學(xué)

怎么正確有效的學(xué)好初二數(shù)學(xué)

時(shí)間: 欣怡1112 分享

怎么正確有效的學(xué)好初二數(shù)學(xué)

  和初一相比起來(lái),初二不僅增加了物理學(xué)科,數(shù)學(xué)的難也上升了一個(gè)高度。那么怎么正確有效的學(xué)好初二數(shù)學(xué)?以下是學(xué)習(xí)啦小編分享給大家的學(xué)好初二數(shù)學(xué)的建議,希望可以幫到你!

  學(xué)好初二數(shù)學(xué)的建議

  一、該記的記,該背的背,不要以為理解了就行

  有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說(shuō)你只講對(duì)了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9*9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來(lái)的。

  同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺(jué)得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規(guī)則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規(guī)則,誰(shuí)就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。

  比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來(lái)的,二者是相反方向的變形。

  對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問(wèn)題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒(méi)有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。

  二、幾個(gè)重要的數(shù)學(xué)思想

  1、“方程”的思想

  數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。

  初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。

  因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。

  所謂的“方程”思想就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。

  2、“數(shù)形結(jié)合”的思想

  大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問(wèn)題的一門課,叫做“解析幾何”。

  在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問(wèn)題就離不開圖象了。往往借助圖象能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來(lái)分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。

  3、“對(duì)應(yīng)”的思想

  “對(duì)應(yīng)”的思想由來(lái)已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)谟?jì)算或化簡(jiǎn)中,將對(duì)應(yīng)公式的左邊,對(duì)應(yīng)a,y對(duì)應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來(lái)解題。初二、初三我們還將看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)。“對(duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來(lái)越大的作用。

  三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路

  在學(xué)習(xí)新概念、新運(yùn)算時(shí),老師們總是通過(guò)已有知識(shí)自然而然過(guò)渡到新知識(shí),水到渠成,亦即所謂“溫故而知新”。因此說(shuō),數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。

  我們?cè)谡n堂上聽(tīng)老師講解,不光是學(xué)習(xí)新知識(shí),更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對(duì)數(shù)學(xué)的一種悟性。我去佛山一中開家長(zhǎng)會(huì)時(shí),一中校長(zhǎng)的一番話使我感觸良多。他說(shuō):我是教物理的,學(xué)生物理學(xué)得好,不是我教出來(lái)的,而是他們自己悟出來(lái)的。當(dāng)然,校長(zhǎng)是謙虛的,但他說(shuō)明了一個(gè)道理,學(xué)生不能被動(dòng)地學(xué)習(xí),而應(yīng)主動(dòng)地學(xué)習(xí)。一個(gè)班里幾十個(gè)學(xué)生,同一個(gè)老師教,差異那么大,這就是學(xué)習(xí)主動(dòng)性問(wèn)題了。

  自學(xué)能力越強(qiáng),悟性就越高。隨著年齡的增長(zhǎng),同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強(qiáng)。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,能不能運(yùn)用自己所學(xué)過(guò)的已掌握的舊知識(shí)去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識(shí)的無(wú)矛盾性,你所學(xué)過(guò)的數(shù)學(xué)知識(shí)永遠(yuǎn)都是有用的,都是正確的,數(shù)學(xué)的進(jìn)一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實(shí),就為以后的進(jìn)取奠定了基礎(chǔ),就不難自學(xué)新課。同時(shí),在預(yù)習(xí)新課時(shí),碰到什么自己解決不了的問(wèn)題,帶著問(wèn)題去聽(tīng)老師講解新課,收獲之大是不言而喻的。

  有些同學(xué)為什么聽(tīng)老師講新課時(shí)總有一種似懂非懂的感覺(jué),或者是“一聽(tīng)就懂、一做就錯(cuò)”,就是因?yàn)闆](méi)有預(yù)習(xí),沒(méi)有帶著問(wèn)題學(xué),沒(méi)有將“要我學(xué)”真正變?yōu)?ldquo;我要學(xué)”,力求把知識(shí)變?yōu)樽约旱?。學(xué)來(lái)學(xué)去,知識(shí)還是別人的。檢驗(yàn)數(shù)學(xué)學(xué)得好不好的標(biāo)準(zhǔn)就是會(huì)不會(huì)解題。聽(tīng)懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨(dú)立解題、解對(duì)題才是學(xué)好數(shù)學(xué)的標(biāo)志。

  學(xué)好初二數(shù)學(xué)的技巧

  一、數(shù)學(xué)的記與背。

  對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問(wèn)題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒(méi)有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。

  二、培養(yǎng)數(shù)學(xué)“方程”的思想。

  數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。

  我們?cè)谛W(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。

  物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。

  三、培養(yǎng)“數(shù)形結(jié)合”的思想。

  大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問(wèn)題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問(wèn)題就離不開圖象了。往往借助圖象能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來(lái)分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。

  學(xué)好初二數(shù)學(xué)的記憶法

  1.歸類記憶法。

  根據(jù)識(shí)記材料的性質(zhì)、特征及其內(nèi)在聯(lián)系,進(jìn)行歸納分類。比如,學(xué)完計(jì)量單位后,可以把學(xué)過(guò)的所有內(nèi)容歸納為五類:長(zhǎng)度單位;面積單位;體積和容積單位;重量單位;時(shí)間單位。這樣歸類,能夠把紛紜復(fù)雜的事物系統(tǒng)化、條理化,易于記憶。

  2.歌訣記憶法。

  把要記憶的數(shù)學(xué)知識(shí)編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對(duì)準(zhǔn)頂點(diǎn),零線對(duì)著一邊,另一邊看度數(shù)。”再如,小數(shù)點(diǎn)位置移動(dòng)引起數(shù)的大小變化,“小數(shù)點(diǎn)請(qǐng)你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個(gè)you,擴(kuò)大向you走走走;橫撇加個(gè)zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤。”采用這種方法來(lái)記憶,不僅能讓知識(shí)點(diǎn)朗朗上口,而且還記得牢。

  3.規(guī)律記憶法。

  根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來(lái)進(jìn)行記憶。比如,識(shí)記長(zhǎng)度單位、面積單位、體積單位的化法和聚法?;ê途鄯ㄊ腔ツ媛?lián)系,即高級(jí)單位的數(shù)值×進(jìn)率=低級(jí)單位的數(shù)值,低級(jí)單位的數(shù)值÷進(jìn)率=高級(jí)單位的數(shù)值。掌握了這兩條規(guī)律,化聚問(wèn)題就迎刃而解了。規(guī)律記憶,需要學(xué)生開動(dòng)腦筋對(duì)所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。

  4.列表記憶法。

  就是把某些容易混淆的識(shí)記材料列成表格,達(dá)到記憶之目的。這種方法具有明顯性、直觀性和對(duì)比性。比如,要識(shí)記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個(gè)概念的區(qū)別,就可列成表來(lái)幫助記憶。

  5.重點(diǎn)記憶法。

  隨著年級(jí)的增長(zhǎng),所學(xué)的數(shù)學(xué)知識(shí)也越來(lái)越多,同學(xué)們要想全面記住,既浪費(fèi)時(shí)間且記憶效果不佳。因此,要學(xué)會(huì)記憶重點(diǎn)內(nèi)容,在記住了重點(diǎn)內(nèi)容的基礎(chǔ)上,再通過(guò)推導(dǎo)、聯(lián)想等方法便可記住其他內(nèi)容了。

  比如,學(xué)習(xí)常見(jiàn)的數(shù)量關(guān)系:工作效率×工作時(shí)間=工作量。工作量÷工作效率=工作時(shí)間;工作量+工作時(shí)間=工作效率。這三者關(guān)系中只要記住了第一個(gè)數(shù)量關(guān)系,后面兩個(gè)數(shù)量關(guān)系就可根據(jù)乘法和除法的關(guān)系推導(dǎo)出來(lái)。這樣去記,減輕了記憶的負(fù)擔(dān),提高了記憶的效率。

  6.聯(lián)想記憶法。

  就是通過(guò)一件熟悉的事物想到與它有聯(lián)系的另一件事物來(lái)進(jìn)行記憶。

猜你喜歡:

1.怎么才能正確學(xué)好八年級(jí)英語(yǔ)

2.怎樣提高初二數(shù)學(xué)成績(jī)的方法

3.八年級(jí)數(shù)學(xué)的高效學(xué)習(xí)方法

4.初二數(shù)學(xué)學(xué)習(xí)方法技巧

5.如何學(xué)好初二數(shù)學(xué)的學(xué)習(xí)方法

3800566