5歲幼兒怎么學(xué)數(shù)學(xué)
5歲幼兒怎么學(xué)數(shù)學(xué)
兒童是怎樣學(xué)習(xí)數(shù)學(xué)的?這個問題既簡單又復(fù)雜。5歲幼兒怎么學(xué)會數(shù)學(xué)題呢?下面學(xué)習(xí)啦小編整理關(guān)于5歲幼兒學(xué)數(shù)學(xué)的方法,希望對你有幫助。
5歲幼兒學(xué)數(shù)學(xué)方法
一、數(shù)學(xué)知識的特點
前面已經(jīng)闡明,數(shù)學(xué)是對現(xiàn)實的一種抽象。1,2,3,4……等等數(shù)字,絕不是一些具體事物的名稱,而是人類所創(chuàng)造的一個獨特的符號系統(tǒng)。正如卡西爾(E.Cassirer)所言,“數(shù)學(xué)是一種普遍的符號語言--它與對事物的描述無關(guān)而只涉及對關(guān)系的一般表達(dá)”。 也就是說,數(shù)是對事物之間關(guān)系的一種抽象。
數(shù)學(xué)知識究其實質(zhì),是一種高度抽象化的邏輯知識。
1、數(shù)學(xué)知識是一種邏輯知識。
數(shù)學(xué)知識所反映的不是客觀事物本身所具有的特征或?qū)傩裕鞘挛镏g的關(guān)系。當(dāng)我們說一堆橘子的數(shù)量是“5個”時,并不能從其中任何一個橘子中看到“5”這一屬性,因為“5”這一數(shù)量屬性并不存在于任何一個橘子中,而是存在于它們的相互關(guān)系中--所有的橘子構(gòu)成了一個數(shù)量為“5”的整體。我們要通過點數(shù)得出橘子的總數(shù)來,就需要協(xié)調(diào)各種關(guān)系??梢哉f數(shù)目概念的獲得是對各種關(guān)系加以協(xié)調(diào)的結(jié)果。
因此,幼兒對數(shù)學(xué)知識的掌握,并不像記住一個人的名字那樣簡單,實際上是一種邏輯知識的獲得。按照皮亞杰的區(qū)分,有三種不同類型的知識:物理知識,邏輯數(shù)理知識和社會知識。所謂社會知識,就是依靠社會傳遞而獲得的知識。在數(shù)學(xué)中,數(shù)字的名稱、讀法和寫法等都屬于社會知識,它們都有賴于教師的傳授。如果沒有教師的傳授,兒童自己是無法發(fā)現(xiàn)這些知識的。物理知識和邏輯數(shù)理知識都要通過兒童自己和物體的相互作用來獲得,而這兩類知識之間又有不同。物理知識是有關(guān)事物本身的性質(zhì)的知識,如橘子的大小、顏色、酸甜。兒童要獲得這些知識,只需通過直接作用于物體的動作(看一看、嘗一嘗)就可以發(fā)現(xiàn)了。因此,物理知識來源于對事物本身的直接的抽象,皮亞杰稱之為“簡單抽象”。邏輯數(shù)理知識則不同,它不是有關(guān)事物本身的性質(zhì)的知識,因而也不能通過個別的動作直接獲得。它所依賴的是作用于物體的一系列動作之間的協(xié)調(diào),以及對這種動作協(xié)調(diào)的抽象,皮亞杰稱之為“反省抽象”。反省抽象所反映的不是事物本身的性質(zhì),而是事物之間的關(guān)系。如幼兒掌握了橘子的數(shù)量“5”,就是抽象出了這堆橘子的數(shù)量關(guān)系特征,它和這些橘子的大小、顏色、酸甜無關(guān),也和它們的排列方式無關(guān):無論是橫著排、豎著排,或是排成圈,它們都是5個。兒童對于這一知識的獲得,也不是通過直接的感知,而是通過一系列動作的協(xié)調(diào),具體說就是“點”的動作和“數(shù)”的動作之間的協(xié)調(diào)。首先,他必須使手點的動作和口數(shù)的動作相對應(yīng)。其次是序的協(xié)調(diào),他口中數(shù)的數(shù)應(yīng)該是有序的,而點物的動作也應(yīng)該是連續(xù)而有序的,既不能遺漏,也不能重復(fù)。最后,他還要將所有的動作合在一起,才能得到物體的總數(shù)。
總之,數(shù)學(xué)知識的邏輯性,決定了幼兒學(xué)習(xí)數(shù)學(xué)知識不是一個簡單的記憶的過程,而是一個邏輯的思考的過程。它必須依賴于對各種邏輯關(guān)系的協(xié)調(diào),這是一種反省的抽象。
2、數(shù)學(xué)知識是一種抽象的邏輯知識。
數(shù)學(xué)知識所反映的還不僅僅是具體事物之間的關(guān)系,而是從中抽象出來的、普遍存在的數(shù)學(xué)關(guān)系。即使是幼兒階段所學(xué)習(xí)的10以內(nèi)的自然數(shù),也具有抽象的意義。比如“5”,它可以表示5個人、5只狗、5輛汽車、5個小圓片……任何數(shù)量是“5”的物體。只有當(dāng)幼兒懂得了數(shù)字所表示的各種含義時,才能說他真正理解了數(shù)字的意義。這不僅需要他能從一堆具體的事物中抽取出5這一數(shù)量屬性,還要能把這一抽象的計數(shù)原則運用于各種具體的事物身上,知道“5”不僅屬于5只橘子,它是一種抽象的數(shù)學(xué)關(guān)系。
幼兒要能理解數(shù)學(xué)知識的抽象性,必須具備一種抽象的邏輯思考能力,即要能擺脫具體事物的干擾,對其中的數(shù)學(xué)關(guān)系進行思考。如在進行“5的分合”時,具備抽象思考能力的幼兒就能理解,他分的不僅是5個橘子,而且是一個抽象的數(shù)量“5”。他分的結(jié)果也不僅對當(dāng)前的事情有意義,而且能夠推廣到其它任何數(shù)量為“5”的事物上面--它們都可以根據(jù)這個原則進行分合,因為它們具有相同的數(shù)量。反過來,如果幼兒不能進行抽象的思考,即使他能夠分5只橘子,也不一定會分5個蘋果,因為對他來說這又是另一件事情了。
由此可見,幼兒學(xué)習(xí)數(shù)學(xué)知識是一個從具體的事物中抽象出普遍的數(shù)學(xué)關(guān)系的過程。幼兒要能理解數(shù)這種抽象的邏輯知識,不僅要具備一定的邏輯觀念,還要具備一定的抽象思考能力。那么,幼兒是否具有了這些心理準(zhǔn)備呢?
二、幼兒學(xué)習(xí)數(shù)學(xué)的心理準(zhǔn)備
幼兒有沒有邏輯呢?皮亞杰認(rèn)為是有的。兒童通過反省的抽象所獲得的邏輯數(shù)理知識,正是其邏輯的來源。這里要解釋的是,皮亞杰所說的邏輯,不同于我們平時所說的思維的“邏輯”,而是包含兩個層面,即動作的層面和抽象的層面。兒童邏輯的發(fā)展遵循著從動作的層面向抽象的層面轉(zhuǎn)化的規(guī)律。他對兒童邏輯的心理學(xué)研究發(fā)現(xiàn),對應(yīng)結(jié)構(gòu)、序列結(jié)構(gòu)和類包含結(jié)構(gòu)不僅是數(shù)學(xué)知識的基礎(chǔ),也是兒童的基本的邏輯結(jié)構(gòu)。也就是說,數(shù)學(xué)知識的邏輯和幼兒的心理邏輯是相對應(yīng)的。幼兒思維的發(fā)展,特別是幼兒邏輯觀念的發(fā)展,為他們學(xué)習(xí)數(shù)學(xué)提供了重要的心理準(zhǔn)備。那么,幼兒的思維發(fā)展為他們學(xué)習(xí)數(shù)學(xué)知識提供了什么樣的邏輯準(zhǔn)備呢?
1、幼兒邏輯觀念的發(fā)展
我們以數(shù)學(xué)知識中普遍存在的邏輯觀念--一一對應(yīng)觀念、序列觀念和類包含觀念為例,考察幼兒邏輯觀念的發(fā)展。
2、幼兒思維的抽象性及其發(fā)展
皮亞杰認(rèn)為,抽象的思維起源于動作。抽象水平的邏輯來自于對動作水平的邏輯的概括和內(nèi)化。在一歲半左右,幼兒具備了表象性功能,這使得抽象的思考開始成為可能。幼兒能夠借助于頭腦中的表象,對已經(jīng)不在此時此地的事物進行間接的思考。能夠擺脫時間和空間的限制而在頭腦中進行思考,這是幼兒抽象思維發(fā)展的開始。然而,要在頭腦中完全達(dá)到一種邏輯的思考,則是在大約十年以后。之所以需要這么長的時間,是因為幼兒要在頭腦中重新建構(gòu)一個抽象的邏輯。這不僅需要將動作內(nèi)化于頭腦中,還要能將這些內(nèi)化了的動作在頭腦中自如地加以逆轉(zhuǎn),即達(dá)到一種可逆性。這對幼兒來說,不是一件容易的事情。舉一個簡單的例子,如果我們讓一個成人講述他是怎樣爬行的,他未必能準(zhǔn)確地回答,盡管爬行的動作對他來說并不困難。他需要一邊爬行,一邊反省自己的動作,將這些動作內(nèi)化于頭腦中,并在頭腦中將這些動作按一定的順序組合起來,才能概括成一個抽象的認(rèn)識。幼兒的抽象邏輯的建構(gòu)過程就類似于此,但他們所面臨的困難比成人更大。因為在幼兒的頭腦中,還沒有形成一個內(nèi)化的、可逆的運算結(jié)構(gòu)。表現(xiàn)在上面的例子中,幼兒既不能在頭腦中處理整體和部分的關(guān)系,也不能建立一個序列的結(jié)構(gòu),而只能局限于具體事物,在動作層次上完成 相關(guān)的任務(wù)。