學習啦 > 學習方法 > 教學方法 > 人教版因數(shù)和倍數(shù)教學設(shè)計

人教版因數(shù)和倍數(shù)教學設(shè)計

時間: 芷瓊1026 分享

人教版因數(shù)和倍數(shù)教學設(shè)計

  在人教版小學數(shù)學的教學中,因數(shù)和倍數(shù)是教學的重點。關(guān)于因數(shù)和倍數(shù)的教學要怎么設(shè)計呢?接下來學習啦小編為你整理了人教版因數(shù)和倍數(shù)教學設(shè)計,一起來看看吧。

  人教版因數(shù)和倍數(shù)教學設(shè)計(一)

  教學目標:

  1、理解和掌握因數(shù)和倍數(shù)的概念,認識他們之間的聯(lián)系和區(qū)別。

  2、學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練的求出一個數(shù)的因數(shù)或倍數(shù)。

  3、知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  教學重點:

  掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

  教學難點:

  理解和掌握因數(shù)和倍數(shù)的概念。

  教學準備:

  課件

  教學過程:

  一、創(chuàng)設(shè)情境,引入新課

  師:我和你們的關(guān)系是……?

  生:師生關(guān)系。

  師:對,我是你們的老師,你們是我的學生,我們的關(guān)系是師生關(guān)系。是啊,人與人之間的關(guān)系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關(guān)系,他們之間的關(guān)系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數(shù)學王國里,在整數(shù)乘法中也存在著這樣相互依存的關(guān)系,這節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))

  (設(shè)計意圖:先讓學生體會關(guān)系,再通過同桌關(guān)系讓學生體會相互依存,不能獨立存在,進而為因數(shù)與倍數(shù)的相互依存關(guān)系打下基礎(chǔ)。)

  二、探究新知

  (一)1、出示主題圖,仔細觀察,你得到了哪些數(shù)學信息?

  學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養(yǎng)學生提取數(shù)學信息的能力和語言表達能力,即:數(shù)學語言要求簡練嚴謹)

  教師 :你們能夠用乘法算式表示出來嗎?

  學生說出算式,教師板書:2×6=12

  2. 出示:因為2×6=12

  所以2是12的因數(shù),6也是12的因數(shù);

  12是2的倍數(shù),12也是6的倍數(shù)。

  (注:由乘法算式理解因數(shù)和倍數(shù)相互依存,不能獨立存在。)

  3.教師出示圖2:師:根據(jù)圖上的內(nèi)容,可以寫出怎樣的算式?

  3×4=12

  從這道算式中,你知道誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?(讓學生自己說一說,進而加深因數(shù)倍數(shù)關(guān)系的認識。)

  教師小結(jié):因數(shù)和倍數(shù)是相互依存的,為了方便,我們在研究因數(shù)與倍數(shù)時,我們所說的數(shù)是整數(shù),一般不包括0.

  4、師:誰來說一道乘法算式考考大家。

  (指名生說一說)

  5、讓其他學生來說一說誰是誰的因數(shù)誰是誰的倍數(shù)。

  (注:可以讓幾位學生互相說一說。)

  6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數(shù)誰是誰的倍數(shù)。

  (設(shè)計意圖:18÷3=6是為了培養(yǎng)學生思維的逆向性)

  (二)找因數(shù):

  1、師:我們知道了因數(shù)與倍數(shù)之間的關(guān)系,從上面的研究中,我們還可以知道,一個數(shù)的因數(shù)還不止一個12的因數(shù)有: 1,2,3,4,6,12. 那么怎樣求一個數(shù)的因數(shù)呢?

  出示例1:18的因數(shù)有哪幾個?

  注意:請同學們四人以小組討論,在找18的因數(shù)中如何做到不重復(fù),不遺漏。

  學生嘗試完成:匯報

  (18的因數(shù)有: 1,2,3,6,9,18)

  師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

  師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  2、用這樣的方法,請你再找一找36的因數(shù)有那些?

  匯報36的因數(shù)有: 1,2,3,4,6,9,12,18,36

  師:你是怎么找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

  師:18和36的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  請同學們觀察一個數(shù)的因數(shù)有什么特點。

  在教師引導(dǎo)下,學生總結(jié)出:任何一個數(shù)的因數(shù),最小的一定是( ),而最大的一定是( ),因數(shù)的個數(shù)是有限的。

  (設(shè)計意圖:培養(yǎng)學生探索、歸納、總結(jié)、概括的能力。)

  3、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如 18的因數(shù)

  1、2、3、6、9、18

  小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

  從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  (三)找倍數(shù):

  1、我們學會找一個數(shù)的因數(shù)了,那如何找一個數(shù)的倍數(shù)呢?2的倍數(shù)你能找出來嗎?

  匯報:2、4、6、8、10、16、……

  師:為什么找不完?

  你是怎么找到這些倍數(shù)的?

  (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍數(shù)最小是幾?最大的你能找到嗎?

  2、再找3和5的倍數(shù)。

  3的倍數(shù)有:3,6,9,12,……

  你是怎么找的?(用3分別乘以1,2,3,……倍)

  5的倍數(shù)有:5,10,15,20,……

  師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示 :2的倍數(shù),3的倍數(shù),5的倍數(shù)

  師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢? 讓學生觀察2、3、5的倍數(shù),說一說一個數(shù)的倍數(shù)有什么特點。

  學生試著總結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

  三、課堂小結(jié):

  通過今天這節(jié)課的學習,你有什么收獲?

  學生匯報這節(jié)課的學習所得。

  四、拓展延伸。

  1、教材16頁練習二第5題。學生在小組中討論交流:這四位同學的說法是否正確?為什么?

  2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。

  五、板書設(shè)計

  因數(shù)和倍數(shù)

  18的因數(shù)有:1,2,3,6,9,18.

  一個數(shù)的最小因數(shù)是1,最大因數(shù)是他本身。一個數(shù)的因數(shù)的個數(shù)是有限的。

  2的倍數(shù)有:2,4,6,8,…

  一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。

3118161