初三下冊(cè)數(shù)學(xué)圓的教案以及圓的概念
初三下冊(cè)數(shù)學(xué)圓的教案以及圓的概念
圓是中學(xué)階段很重要的一個(gè)知識(shí)點(diǎn),圓的概念很豐富,需要同學(xué)們?nèi)ビ洃?,同學(xué)們還需要掌握?qǐng)A的相關(guān)計(jì)算公式。下面一起來看看學(xué)習(xí)啦小編整理的初三下冊(cè)數(shù)學(xué)圓的教案以及圓的概念,希望對(duì)您有幫助。
初三下冊(cè)數(shù)學(xué)圓的教案第一部分
初三下冊(cè)數(shù)學(xué)圓的教案第二部分
初三下冊(cè)數(shù)學(xué)圓的概念
1、 圓的有關(guān)概念:
(1)、確定一個(gè)圓的要素是圓心和半徑。
(2)①連結(jié)圓上任意兩點(diǎn)的線段叫做弦。②經(jīng)過圓心的弦叫做直徑。③圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。④小于半圓周的圓弧叫做劣弧。⑤大于半圓周的圓弧叫做優(yōu)弧。⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。⑦頂點(diǎn)在圓上,并且兩邊和圓相交的角叫圓周角。⑧經(jīng)過三角形三個(gè)頂點(diǎn)可以畫一個(gè)圓,并且只能畫一個(gè),經(jīng)過三角形三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個(gè)三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形,外心是三角形各邊中垂線的交點(diǎn);直角三角形外接圓半徑等于斜邊的一半。⑨與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓外切三角形,三角形的內(nèi)心就是三角形三條內(nèi)角平分線的交點(diǎn)。
2、 圓的有關(guān)性質(zhì)
(1)定理在同圓或等圓中,如果圓心角相等,那么它所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)的其余各組量都分別相等。
(2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
(3)圓周角定理:一條弧所對(duì)的圓周角等于該弧所對(duì)的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,相等的圓周角所對(duì)的弧也相等。推論2半圓或直徑所對(duì)的圓周角都相等,都等于90 。90 的圓周角所對(duì)的弦是圓的直徑。推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
(4)切線的判定與性質(zhì):判定定理:經(jīng)過半徑的外端且垂直與這條半徑的直線是圓的切線。性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn);經(jīng)過切點(diǎn)切垂直于切線的直線必經(jīng)過圓心。
(5)定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。
(6)圓的切線上某一點(diǎn)與切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng);切線長(zhǎng)定理:從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分這兩條切線的夾角。
(7)圓內(nèi)接四邊形對(duì)角互補(bǔ),一個(gè)外角等于內(nèi)對(duì)角;圓外切四邊形對(duì)邊和相等;
(8)弦切角定理:弦切角等于它所它所夾弧對(duì)的圓周角。
(9)和圓有關(guān)的比例線段:相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。
(10)兩圓相切,連心線過切點(diǎn);兩圓相交,連心線垂直平分公共弦。