學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 復(fù)習(xí)方法 > 初三數(shù)學(xué)公式知識(shí)點(diǎn)歸納總結(jié)

初三數(shù)學(xué)公式知識(shí)點(diǎn)歸納總結(jié)

時(shí)間: 欣怡1112 分享

初三數(shù)學(xué)公式知識(shí)點(diǎn)歸納總結(jié)

  初三學(xué)習(xí)的知識(shí)是初中三年學(xué)習(xí)的匯總,為了方便大家更好地復(fù)習(xí),以下是學(xué)習(xí)啦小編分享給大家的初三數(shù)學(xué)公式知識(shí)點(diǎn)歸納,希望可以幫到你!

  初三數(shù)學(xué)公式知識(shí)點(diǎn)歸納

  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

  判別式

  b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

  b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根

  b2-4ac0

  拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h

  正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'

  圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h

  常見的初中數(shù)學(xué)公式

  1.過兩點(diǎn)有且只有一條直線

  2.兩點(diǎn)之間線段最短

  3.同角或等角的補(bǔ)角相等

  4.同角或等角的余角相等

  5.過一點(diǎn)有且只有一條直線和已知直線垂直

  6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7.平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9.同位角相等,兩直線平行

  10.內(nèi)錯(cuò)角相等,兩直線平行

  11.同旁內(nèi)角互補(bǔ),兩直線平行

  12.兩直線平行,同位角相等

  13.兩直線平行,內(nèi)錯(cuò)角相等

  14.兩直線平行,同旁內(nèi)角互補(bǔ)

  15.定理 三角形兩邊的和大于第三邊

  16.推論 三角形兩邊的差小于第三邊

  17.三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

  18.推論1 直角三角形的兩個(gè)銳角互余

  19.推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20.推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22.邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23.角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24.推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25.邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26.斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27.定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28.定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30.等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

  31.推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33.推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34.等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35.推論1 三個(gè)角都相等的三角形是等邊三角形

  36.推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

  37.在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38.直角三角形斜邊上的中線等于斜邊上的一半

  39.定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40.逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41.線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42.定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43.定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44.定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上

  45.逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46.勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  47.勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  48.定理 四邊形的內(nèi)角和等于360°

  49.四邊形的外角和等于360°

  50.多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  51.推論 任意多邊的外角和等于360°

  52.平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等

  53.平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等

  54.推論 夾在兩條平行線間的平行線段相等

  55.平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分

  56.平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形

  57.平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形

  58.平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形

  59.平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形

  60.矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

  61.矩形性質(zhì)定理2 矩形的對(duì)角線相等

  62.矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

  63.矩形判定定理2 對(duì)角線相等的平行四邊形是矩形

  64.菱形性質(zhì)定理1 菱形的四條邊都相等

  65.菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66.菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67.菱形判定定理1 四邊都相等的四邊形是菱形

  68.菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形

  69.正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

  70.正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71.定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72.定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73.逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74.等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

  75.等腰梯形的兩條對(duì)角線相等

  76.等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77.對(duì)角線相等的梯形是等腰梯形

  78.平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79.推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80.推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81.三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82.梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

  83.(1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

  84.(2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85.(3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

  86.平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87.推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例

  88.定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89.平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90.定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91.相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92.直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93.判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94.判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95.定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96.性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97.性質(zhì)定理2 相似三角形周長的比等于相似比

  98.性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99.任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100.任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值。

  初三數(shù)學(xué)圓的重要知識(shí)點(diǎn)總結(jié)

  1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

 ?、燮椒窒宜鶎?duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2 圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角

  12.①直線L和⊙O相交 d

 ?、谥本€L和⊙O相切 d=r

 ?、壑本€L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20.①兩圓外離 d>R+r

 ?、趦蓤A外切 d=R+r

  ③.兩圓相交 R-rr)

 ?、?兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 ?、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 ?、平?jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計(jì)算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  初三數(shù)學(xué)復(fù)習(xí)技巧

  注重課本知識(shí)

  全面復(fù)習(xí)基礎(chǔ)知識(shí),加強(qiáng)基本技能訓(xùn)練的第一階段的復(fù)習(xí)工作我們已經(jīng)結(jié)束了,在第二階段的復(fù)習(xí)中,反思和總結(jié)上一輪復(fù)習(xí)中的遺漏和缺憾,會(huì)發(fā)現(xiàn)有些知識(shí)還沒掌握好,解題時(shí)還沒有思路,因此要做到邊復(fù)習(xí)邊將知識(shí)進(jìn)一步歸類,加深記憶;還要進(jìn)一步理解概念的內(nèi)涵和外延,牢固掌握法則、公式、定理的推導(dǎo)或證明,進(jìn)一步加強(qiáng)解題的思路和方法;同時(shí)還要查找一些類似的題型進(jìn)行強(qiáng)化訓(xùn)練,要及時(shí)有目的有針對(duì)性的補(bǔ)缺補(bǔ)漏,直到自己真正理解會(huì)做為止,決不要輕易地放棄。

  這個(gè)階段尤其要以課本為主進(jìn)行復(fù)習(xí),因?yàn)檎n本的例題和習(xí)題是教材的重要組成部分,是數(shù)學(xué)知識(shí)的主要載體。吃透課本上的例題、習(xí)題,才能有利于全面、系統(tǒng)地掌握數(shù)學(xué)基礎(chǔ)知識(shí),熟練數(shù)學(xué)基本方法,以不變應(yīng)萬變。所以在復(fù)習(xí)時(shí),我們要學(xué)會(huì)多方位、多角度審視這些例題習(xí)題,從中進(jìn)一步清晰地掌握基礎(chǔ)知識(shí),重溫思維過程,鞏固各類解法,感悟數(shù)學(xué)思想方法。復(fù)習(xí)形式是多樣的,尤其要提高復(fù)習(xí)效率。

  另外,現(xiàn)在中考命題仍然以基礎(chǔ)題為主,有些基礎(chǔ)題是課本上的原題或改造了的題,有的大題雖是“高于教材”,但原型一般還是教材中的例題或習(xí)題,是課本中題目的引申、變形或組合,課本中的例題、練習(xí)和作業(yè)題不僅要理解,而且一定還要會(huì)做。同時(shí),對(duì)課本上的《閱讀材料》《課題研究》《做一做》《想一想》等內(nèi)容,我們也一定要引起重視。

  注重課堂學(xué)習(xí)

  在任課老師的指導(dǎo)下,通過課堂教學(xué),要求同學(xué)們掌握各知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,理清知識(shí)結(jié)構(gòu),形成整體的認(rèn)識(shí),通過對(duì)基礎(chǔ)知識(shí)的系統(tǒng)歸納,解題方法的歸類,在形成知識(shí)結(jié)構(gòu)的基礎(chǔ)上加深記憶,至少應(yīng)達(dá)到使自己準(zhǔn)確掌握每個(gè)概念的含義,把平時(shí)學(xué)習(xí)中的模糊概念搞清楚,使知識(shí)掌握的更扎實(shí)的目的,要達(dá)到使自己明確每一個(gè)知識(shí)點(diǎn)在整個(gè)初中數(shù)學(xué)中的地位、聯(lián)系和應(yīng)用的目的。上課要會(huì)聽課,會(huì)記錄,必須要把握每一節(jié)課所講的知識(shí)重點(diǎn),抓住關(guān)鍵,解決疑難,提高學(xué)習(xí)效率,根據(jù)個(gè)人的具體情況,課堂上及時(shí)查漏補(bǔ)缺。

  夯實(shí)基礎(chǔ)知識(shí)

  在歷年的數(shù)學(xué)中考試題中,基礎(chǔ)分值占的最多,再加上部分中檔題及較難題中的基礎(chǔ)分值,因此所占分值的比例就更大。我們必須扎扎實(shí)實(shí)地夯實(shí)基礎(chǔ),通過系統(tǒng)的復(fù)習(xí),我們對(duì)初中數(shù)學(xué)知識(shí)達(dá)到“理解”和“掌握”的要求,在應(yīng)用基礎(chǔ)知識(shí)時(shí)能做到熟練、正確和迅速。

  有的考題會(huì)對(duì)需要考查的知識(shí)和方法創(chuàng)設(shè)一個(gè)新的問題情境,特別是一些需要有較高區(qū)分度的試題更是如此;每個(gè)中檔以上難度的數(shù)學(xué)試題通常要涉及多個(gè)知識(shí)點(diǎn)、多種數(shù)學(xué)思想方法,或者在知識(shí)交匯點(diǎn)上巧妙設(shè)計(jì)試題。因此,我們每一個(gè)同學(xué)要學(xué)會(huì)思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學(xué)到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進(jìn)行正確的思考。

  注意知識(shí)的遷移

  課本中的某些例題、習(xí)題,并不是孤立的,而是前后聯(lián)系、密切相關(guān)的,其他學(xué)科的知識(shí)也和數(shù)學(xué)有著千絲萬縷的聯(lián)系,我們要學(xué)會(huì)從思維發(fā)展的最近點(diǎn)出發(fā),去發(fā)現(xiàn)、研究和展示這些知識(shí)的內(nèi)在聯(lián)系,這樣做不僅有助于自己深刻理解課本知識(shí),有利于強(qiáng)化知識(shí)重點(diǎn),更重要的是能有效地促進(jìn)自己數(shù)學(xué)知識(shí)網(wǎng)絡(luò)和方法體系的構(gòu)建,使知識(shí)和能力產(chǎn)生良性遷移,達(dá)到觸類旁通的效果,通過探究課本典型例題、習(xí)題的內(nèi)在聯(lián)系,讓我們?cè)谏羁汤斫庹n本知識(shí)的同時(shí),更有效地形成知識(shí)網(wǎng)絡(luò)與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數(shù),還可以解決二次三項(xiàng)式的因式分解、方程組的根的判定及二次函數(shù)圖象與橫軸的交點(diǎn)坐標(biāo)。

  復(fù)習(xí)形成梯度

  如果說第一階段是中考復(fù)習(xí)的基礎(chǔ),是重點(diǎn),側(cè)重了雙基訓(xùn)練,那么第二階段的復(fù)習(xí)就是第一階段復(fù)習(xí)的延伸和提高,這個(gè)階段的練習(xí)題要選擇有一些難度的題,但又不是越難越好,難題做的越多越好,做題要有典型性,代表性,所選擇的難題是自己能夠逐步完成的,這樣才能既激發(fā)自己解難求進(jìn)的學(xué)習(xí)欲望,又能使自己從解決較難問題中看到自己的力量,增強(qiáng)學(xué)習(xí)的信心,產(chǎn)生更強(qiáng)的求知欲望。

  注重解題方法

  基礎(chǔ)知識(shí)就是初中數(shù)學(xué)課程中所涉及的概念、公式、公理、定理等。要求同學(xué)們掌握各知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,理清知識(shí)結(jié)構(gòu),形成整體的認(rèn)識(shí),并能綜合運(yùn)用。每年的中考數(shù)學(xué)會(huì)出現(xiàn)一兩道難度較大,綜合性較強(qiáng)的數(shù)學(xué)問題,解決這類問題所用到的知識(shí)都是同學(xué)們學(xué)過的基礎(chǔ)知識(shí),并不依賴于那些特別的,沒有普遍性的解題技巧。

  中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法,待定系數(shù)法、判別式法等操作性較強(qiáng)的數(shù)學(xué)方法。在復(fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的內(nèi)涵,它所適應(yīng)的題型,包括解題步驟都應(yīng)該熟練掌握。

  學(xué)會(huì)運(yùn)用

  數(shù)學(xué)思想的進(jìn)一步形成和繼續(xù)培養(yǎng)是十分重要的,因?yàn)樗膽?yīng)用是十分廣泛的。比如方程思想、特殊和一般的思想、數(shù)形結(jié)合的思想,函數(shù)思想、分類討論思想、化歸與轉(zhuǎn)化的思想等,我們要加深對(duì)這些思想的深刻理解,目前要多做一些相關(guān)內(nèi)容的題目;從近幾年中考情況看,最后的“壓軸題”往往與此類題型有關(guān),不少同學(xué)解這類問題時(shí),要么只注意到代數(shù)知識(shí),要么只注意到幾何知識(shí),不會(huì)熟練地進(jìn)行代數(shù)知識(shí)與幾何知識(shí)的相互轉(zhuǎn)換。

  綜合運(yùn)用

  通過對(duì)課本典型例題、習(xí)題的有機(jī)演變和拓展延伸,讓自己在參與探究中提高應(yīng)變能力和創(chuàng)新能力。以課本典型例題、習(xí)題為題源進(jìn)行一題多解、一題多變的訓(xùn)練是落實(shí)新課程理念、強(qiáng)化數(shù)學(xué)創(chuàng)新教學(xué)的重要途徑。課本上的某些例(習(xí))題看似平淡無奇,但如果我們以此為藍(lán)本,改變其條件或結(jié)論,運(yùn)用不同的知識(shí)和手段,編擬出形式新穎的題目,這對(duì)于提高自己的認(rèn)識(shí)層次、強(qiáng)化探索創(chuàng)新和應(yīng)變遷移能力,是有很大幫助的。因此,在這個(gè)階段,我們同時(shí)還要做到能把各個(gè)章節(jié)中的知識(shí)聯(lián)系起來,并能綜合運(yùn)用,做到舉一反三、觸類旁通。縱觀中考數(shù)學(xué)試題中對(duì)能力的考查,除了考查運(yùn)算能力、空間想象能力和邏輯思維能力以及分析和解決純數(shù)學(xué)問題的能力外,又強(qiáng)化了閱讀理解能力、探索創(chuàng)新能力和數(shù)學(xué)應(yīng)用能力,以及對(duì)同學(xué)們的情感、意志、毅力、價(jià)值觀等非智力因素的考查,就必然使中考數(shù)學(xué)試題對(duì)能力的考查進(jìn)入一個(gè)新的階段。

猜你喜歡:

1.高考必備的數(shù)學(xué)公式匯總

2.高考必備數(shù)學(xué)公式知識(shí)點(diǎn)知識(shí)歸納

3.初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

4.初三期中考試數(shù)學(xué)知識(shí)點(diǎn)整理

5.初二年級(jí)數(shù)學(xué)公式知識(shí)點(diǎn)歸納

3810484