高三立體幾何學習方法
高三立體幾何學習方法
升入高中后,面對新的課程,新的知識,新的學習方法很多學生多會感到無所適從,尤其是在高中立體幾何方面頗感頭疼。下面學習啦小編就和大家分享高三立體幾何學習方法,希望對大家有幫助!
高三立體幾何學習方法:
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時,思考應多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出
二、立足課本,夯實基礎
學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應用
我個人覺得,解立體幾何的問題,主要是充分運用“轉(zhuǎn)化”這種數(shù)學思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關鍵的。例如:
(1) 兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2) 異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點面距離,點面距離又可轉(zhuǎn)化為點線距離。
(3) 面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學模型
新課程標準中多次提到“數(shù)學模型”一詞,目的是進一步加強數(shù)學與現(xiàn)實世界的聯(lián)系。數(shù)學模型是把實際問題用數(shù)學語言抽象概括,再從數(shù)學角度來反映或近似地反映實際問題時,所得出的關于實際問題的描述。數(shù)學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復雜,相應的數(shù)學模型也越復雜。
從形狀的角度反映現(xiàn)實世界的物體時,經(jīng)過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內(nèi)容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助。空間幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關系,是研究直線與直線、直線與平面、平面與平面位置關系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經(jīng)歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關系,歸納、概括它們的判定定理和性質(zhì)定理。
六、總結(jié)規(guī)律,規(guī)范訓練
立體幾何解題過程中,常有顯著的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉(zhuǎn)換,如能建立空間坐標系可用空間向量來解決。只有不斷總結(jié),才能不斷高。
還要注重規(guī)范訓練,高考中反映的這方面的不足十分嚴重,不少考生對作、證、求三個環(huán)節(jié)交待不清,表達不夠規(guī)范、嚴謹,因果聯(lián)系不充分,圖形中各元素聯(lián)系理解錯誤,符號語言不會運用等。這就要求我們在平時養(yǎng)成良好的答題習慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規(guī)范性在數(shù)學的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對于即將參加高考的同學來說,考試的每一分都是重要的,在“按步給分”的原則下,以平時的每一道題開始培養(yǎng)這種規(guī)范性的好處是很顯著的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。
高三立體幾何學習口訣:
學好立幾并不難,空間想象是關鍵。點線面體是一家,共筑立幾百花園。
點在線面用屬于,線在面內(nèi)用包含。四個公理是基礎,推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進空間。
判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進向量新工具,計算證明開新篇??臻g建系求坐標,向量運算更簡便。
知識創(chuàng)新無止境,學問思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關系全在里。
算面積來求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
看了高三立體幾何學習方法的人還看: